Suppr超能文献

一种用于预测喉鳞状细胞癌放疗反应和无复发生存率的联合基因特征模型。

A combined gene signature model for predicting radiotherapy response and relapse-free survival in laryngeal squamous cell carcinoma.

作者信息

Gong Shiqi, Yang Liyun, Xu Meng, Xiang Mingliang, Lang Juntian, Zhang Hao, Shan Yamin

机构信息

Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Department of Otolaryngology, Gongli Hospital of Pudong, Shanghai, 200135, China.

出版信息

Cancer Cell Int. 2025 Mar 18;25(1):102. doi: 10.1186/s12935-025-03739-5.

Abstract

BACKGROUND

Radioresistance is a major challenge in radiotherapy for laryngeal squamous cell carcinoma (LSCC), and there is currently no effective method to predict radiosensitivity in LSCC patients. This study aimed to establish a prediction model for radiotherapy response based on gene expression.

METHODS

The datasets of LSCC were obtained from the ENT department of Shanghai Ruijin Hospital and The Cancer Genome Atlas (TCGA). Lasso regression and Cox regression were used to establish the prediction model based on gene expression. Weighted gene coexpression network analysis (WGCNA) was used to analyze the correlation between gene expression and clinical characteristics. RT-qPCR was used to detect gene expression in tumor tissue to verify the accuracy of the prediction model.

RESULTS

Using a cohort of LSCC cases receiving radiotherapy collected in the TCGA database, the 3 protein-coding genes (PCGs) signature model was identified for the first time as the predictor of relapse-free survival and radiosensitivity in LSCC patients. And we explored the potential clinical value of 3 PCGs and screened out 2 long non-coding RNAs (lncRNAs) potential associated with 3 PCGs. More importantly, the LSCC cases collected by our department were used to preliminarily verify the predictive power of the 3 PCGs signature model for the radiosensitivity of LSCC, and the significant correlation between the expression levels of the 3 PCGs and the 2 lncRNAs.

CONCLUSION

We successfully establish a radiosensitivity prediction model based on the 3 PCGs Riskscore, which provides a theoretical basis for the decision-making of LSCC treatment options. Meantime, we preliminarily screen the potential associated lncRNAs of the 3 PCGs for further basic and clinical research.

摘要

背景

放射抗性是喉鳞状细胞癌(LSCC)放射治疗中的主要挑战,目前尚无有效的方法来预测LSCC患者的放射敏感性。本研究旨在基于基因表达建立放射治疗反应的预测模型。

方法

LSCC数据集来自上海瑞金医院耳鼻喉科和癌症基因组图谱(TCGA)。使用套索回归和Cox回归基于基因表达建立预测模型。采用加权基因共表达网络分析(WGCNA)分析基因表达与临床特征之间的相关性。采用RT-qPCR检测肿瘤组织中的基因表达,以验证预测模型的准确性。

结果

利用TCGA数据库中收集的一组接受放疗的LSCC病例,首次鉴定出3个蛋白质编码基因(PCG)特征模型作为LSCC患者无复发生存和放射敏感性的预测指标。我们探索了3个PCG的潜在临床价值,并筛选出2个与3个PCG潜在相关的长链非编码RNA(lncRNA)。更重要的是,我们科室收集的LSCC病例初步验证了3个PCG特征模型对LSCC放射敏感性的预测能力,以及3个PCG与2个lncRNA表达水平之间的显著相关性。

结论

我们成功建立了基于3个PCG风险评分的放射敏感性预测模型,为LSCC治疗方案的决策提供了理论依据。同时,我们初步筛选了3个PCG的潜在相关lncRNA,以供进一步的基础和临床研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a768/11916850/15d3bd04a39a/12935_2025_3739_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验