Suppr超能文献

由于气溶胶采样中吸湿性导致的偏差,新德里的空气污染比观测到的更为严重。

Air pollution in New Delhi is more severe than observed due to hygroscopicity-induced bias in aerosol sampling.

作者信息

Chen Ying

机构信息

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK.

出版信息

NPJ Clean Air. 2025;1(1):1. doi: 10.1038/s44407-024-00001-6. Epub 2025 Mar 12.

Abstract

New Delhi, India, is suffering from one of the worst air quality in the world, estimated to be responsible for 10,000 premature deaths per year. Although the high pollution level of fine particulate matter (PM) in New Delhi has attracted global attention, the true level of PM pollution could still be underestimated due to the inherent sampling bias associated with particle hygroscopic growth. This study compiles a comprehensive in-situ observation dataset from a series of recent studies in New Delhi, to quantify hygroscopicity-induced bias for the first time, and found that the more severe pollution the larger underestimation, and report the underestimate can be up to 20% (or 50 µg/m) of PM concentration on average in humid winter morning rush hours. This study fills in the gap of the understanding of PM pollution in the most polluted megacity in the world, and provides a calibration approach for future studies to develop better understanding of air quality in New Delhi.

摘要

印度新德里正遭受着世界上最严重的空气质量问题之一,据估计每年有1万例过早死亡与此有关。尽管新德里细颗粒物(PM)的高污染水平已引起全球关注,但由于与颗粒物吸湿增长相关的固有采样偏差,PM污染的真实水平可能仍被低估。本研究汇总了近期在新德里开展的一系列研究中的全面现场观测数据集,首次对吸湿引起的偏差进行量化,发现污染越严重,低估程度越大,并报告在潮湿的冬季早晨高峰时段,低估平均可达PM浓度的20%(或50µg/m)。本研究填补了对世界上污染最严重的大城市PM污染认识的空白,并为未来更好地了解新德里空气质量的研究提供了一种校准方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验