Chowdhury Sourangsu, Dey Sagnik
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Environ Int. 2016 May;91:283-90. doi: 10.1016/j.envint.2016.03.004. Epub 2016 Mar 18.
In India, more than a billion population is at risk of exposure to ambient fine particulate matter (PM2.5) concentration exceeding World Health Organization air quality guideline, posing a serious threat to health. Cause-specific premature death from ambient PM2.5 exposure is poorly known for India. Here we develop a non-linear power law (NLP) function to estimate the relative risk associated with ambient PM2.5 exposure using satellite-based PM2.5 concentration (2001-2010) that is bias-corrected against coincident direct measurements. We show that estimate of annual premature death in India is lower by 14.7% (19.2%) using NLP (integrated exposure risk function, IER) for assumption of uniform baseline mortality across India (as considered in the global burden of disease study) relative to the estimate obtained by adjusting for state-specific baseline mortality using GDP as a proxy. 486,100 (811,000) annual premature death in India is estimated using NLP (IER) risk functions after baseline mortality adjustment. 54.5% of premature death estimated using NLP risk function is attributed to chronic obstructive pulmonary disease (COPD), 24.0% to ischemic heart disease (IHD), 18.5% to stroke and the remaining 3.0% to lung cancer (LC). 44,900 (5900-173,300) less premature death is expected annually, if India achieves its present annual air quality target of 40μgm(-3). Our results identify the worst affected districts in terms of ambient PM2.5 exposure and resulting annual premature death and call for initiation of long-term measures through a systematic framework of pollution and health data archive.
在印度,超过10亿人口面临暴露于超过世界卫生组织空气质量指南的环境细颗粒物(PM2.5)浓度的风险,这对健康构成了严重威胁。在印度,因环境PM2.5暴露导致的特定病因过早死亡情况鲜为人知。在此,我们开发了一种非线性幂律(NLP)函数,利用基于卫星的PM2.5浓度(2001 - 2010年)来估计与环境PM2.5暴露相关的相对风险,该浓度已针对同期直接测量值进行了偏差校正。我们表明,相对于使用GDP作为代理来调整特定邦基线死亡率所获得的估计值,在假设印度各地基线死亡率统一(如全球疾病负担研究中所考虑的)的情况下,使用NLP(综合暴露风险函数,IER)估计印度每年过早死亡人数低14.7%(19.2%)。在进行基线死亡率调整后,使用NLP(IER)风险函数估计印度每年有486,100(811,000)例过早死亡。使用NLP风险函数估计的过早死亡中,54.5%归因于慢性阻塞性肺疾病(COPD),24.0%归因于缺血性心脏病(IHD),18.5%归因于中风,其余3.0%归因于肺癌(LC)。如果印度实现其目前每年40μg/m³的空气质量目标,预计每年过早死亡人数将减少44,900(5900 - 173,300)例。我们的结果确定了在环境PM2.5暴露及由此导致的每年过早死亡方面受影响最严重的地区,并呼吁通过污染与健康数据存档的系统框架启动长期措施。