Hiraoka Takahiro, Tamura Masato, Moriguchi Yoshikiyo, Kuji Riku, Mino Toshihiro, Akiba Masahiro, Takahashi Yosuke, Yoshino Kenichi, Sugiura Yoshimi, Mihashi Toshifumi, Oshika Tetsuro
Department of Ophthalmology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Research & Development Division, Topcon Corporation, Itabashi, Tokyo, Japan.
Ophthalmol Sci. 2025 Jan 3;5(3):100695. doi: 10.1016/j.xops.2024.100695. eCollection 2025 May-Jun.
To explore the curvature distribution in the posterior eye among school-aged children using distortion-corrected widefield OCT and its relationship with biometric variables.
Cross-sectional, observational study.
Eighty-eight children.
A swept-source-OCT prototype system with a repetition rate of 400 kHz was used to capture widefield retinal OCT images with a field-of-view of 68 × 68 degrees. The acquired OCT images were corrected for distortion using ocular optical information obtained separately for each eye. The posterior eye curvature was represented by the Gaussian curvature which was derived from Bruch's membrane segmentation. The mean Gaussian curvature was assessed across 4 regions set centered on the fovea, considering axial length (AL), refractive error, age, and choroidal thickness (ChT). Additionally, we identified the entry site of the long posterior ciliary artery (LPCA) into the choroid.
Local curvature distribution in the posterior eye.
A total of 176 eyes were imaged, with 7 excluded due to low image quality. Analysis of 169 OCT images revealed bilateral symmetry in choroidal vascular patterns and posterior eye curvature. Significant correlations were noted between mean curvature and AL, refractive error, and ChT in the superior, macular, and inferior regions. However, the temporal region exhibited reversed correlation trends. A local maximum curvature point was commonly observed in the temporal region, potentially linked to the LPCA entry site.
Our study provided a quantitative analysis of posterior eye curvature in children, highlighting a local maximum curvature point in the temporal region. Interestingly, the relationships between mean curvature and biometric variables in the temporal region contradicted those in the other 3 regions. Further investigation is necessary to elucidate its origin and implications for ocular development.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
使用畸变校正广角光学相干断层扫描(OCT)技术探究学龄儿童后眼部的曲率分布及其与生物测量变量的关系。
横断面观察性研究。
88名儿童。
使用重复频率为400kHz的扫频源OCT原型系统,采集视野为68×68度的广角视网膜OCT图像。利用每只眼睛单独获取的眼光学信息对采集到的OCT图像进行畸变校正。后眼部曲率由从布鲁赫膜分割得出的高斯曲率表示。考虑眼轴长度(AL)、屈光不正、年龄和脉络膜厚度(ChT),在以黄斑为中心设置的4个区域评估平均高斯曲率。此外,我们确定了睫状后长动脉(LPCA)进入脉络膜的入口位置。
后眼部的局部曲率分布。
共对176只眼睛进行了成像,其中7只因图像质量低而被排除。对169张OCT图像的分析显示脉络膜血管模式和后眼部曲率呈双侧对称。在上方、黄斑和下方区域,平均曲率与AL、屈光不正和ChT之间存在显著相关性。然而,颞侧区域呈现相反的相关趋势。在颞侧区域通常观察到一个局部最大曲率点,可能与LPCA入口位置有关。
我们的研究对儿童后眼部曲率进行了定量分析,突出了颞侧区域的一个局部最大曲率点。有趣的是,颞侧区域平均曲率与生物测量变量之间的关系与其他3个区域相反。有必要进一步研究以阐明其起源及其对眼部发育的影响。
本文末尾的脚注和披露中可能会有专有或商业披露信息。