文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种半水硫酸钙自固化界面增强聚己内酯多孔复合支架。

A calcium sulfate hemihydrate self-setting interface reinforced polycaprolactone porous composite scaffold.

作者信息

Li Changfeng, Li Dongying, Xu Yong, Chen Peng, Zhang Jianfei, Zhou Yanrong, Li Zonghan, Zhou Zixiong, Chen Meigui, Li Mengqi

机构信息

College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China.

Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University Shaoyang 422000 China

出版信息

RSC Adv. 2025 Mar 18;15(11):8430-8442. doi: 10.1039/d5ra00010f. eCollection 2025 Mar 17.


DOI:10.1039/d5ra00010f
PMID:40103987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11917470/
Abstract

The mechanical insufficiency and slow degradation of polycaprolactone (PCL) implants have attracted widespread attention among researchers. Herein, a PCL scaffold with self-setting properties containing calcium sulfate hemihydrate (CSH) was prepared using a triply periodic minimal surfaces (TPMS) design and selective laser sintering (SLS) technology. The results showed that the strength of the scaffold containing 10 wt% CSH was increased by 45.5% compared to the PCL one. More importantly, its strength can be further increased to 1.7 times that of the PCL scaffold after self-setting in water. Mechanism analysis suggests that mechanical strengthening can be attributed to the pinning effect through the newly grown columnar crystals embedded with PCL molecular chains. In addition, the degradation rate of the composite scaffold was approximately 6.8 times higher than that of the PCL one. The study believes that the increase in degradation rate is due to a dual effect, specifically the increase in permeability and the catalytic degradation of PCL in the acidic environment. Encouragingly, the composite scaffold showed a good ability to induce hydroxyapatite formation. Therefore, the self-setting mechanically enhanced composite scaffold is expected to have potential application prospects in bone defect repair.

摘要

聚己内酯(PCL)植入物的机械性能不足和降解缓慢已引起研究人员的广泛关注。在此,采用三重周期极小曲面(TPMS)设计和选择性激光烧结(SLS)技术制备了一种含有半水硫酸钙(CSH)的具有自固化性能的PCL支架。结果表明,与PCL支架相比,含有10 wt% CSH的支架强度提高了45.5%。更重要的是,在水中自固化后,其强度可进一步提高到PCL支架的1.7倍。机理分析表明,机械增强可归因于通过嵌入PCL分子链的新生长柱状晶体产生的钉扎效应。此外,复合支架的降解速率约为PCL支架的6.8倍。该研究认为降解速率的提高是由于双重作用,具体而言是渗透性的增加以及PCL在酸性环境中的催化降解。令人鼓舞的是,复合支架表现出良好的诱导羟基磷灰石形成的能力。因此,这种自固化机械增强复合支架有望在骨缺损修复中具有潜在的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/781673956f88/d5ra00010f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/902024b36886/d5ra00010f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/1201ddefd92a/d5ra00010f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/c5f52c826cff/d5ra00010f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/ae459d13edad/d5ra00010f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/cfc38e87aeed/d5ra00010f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/f5d9f561810e/d5ra00010f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/855594e633bc/d5ra00010f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/8c9bd6950c7b/d5ra00010f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/2517dc627499/d5ra00010f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/d484e27391a1/d5ra00010f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/781673956f88/d5ra00010f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/902024b36886/d5ra00010f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/1201ddefd92a/d5ra00010f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/c5f52c826cff/d5ra00010f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/ae459d13edad/d5ra00010f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/cfc38e87aeed/d5ra00010f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/f5d9f561810e/d5ra00010f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/855594e633bc/d5ra00010f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/8c9bd6950c7b/d5ra00010f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/2517dc627499/d5ra00010f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/d484e27391a1/d5ra00010f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c1/11917470/781673956f88/d5ra00010f-f11.jpg

相似文献

[1]
A calcium sulfate hemihydrate self-setting interface reinforced polycaprolactone porous composite scaffold.

RSC Adv. 2025-3-18

[2]
Mechanical Strengthening and Degradation Regulation of Iron Foam-Polycaprolactone Interpenetrating Composite Scaffolds.

ACS Appl Bio Mater. 2025-5-19

[3]
Crosslinking of a polycaprolactone/tourmaline scaffold by sodium stearate with improved mechanical strength and bioactivity.

RSC Adv. 2023-8-15

[4]
Tetracalcium phosphate/polycaprolactone composite scaffold: Mechanical reinforcement, biodegradability regulation and bioactivity induction.

J Mech Behav Biomed Mater. 2023-11

[5]
Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.

J Tissue Eng Regen Med. 2016-10

[6]
Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

Acta Biomater. 2012-4-19

[7]
Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering.

J Mech Behav Biomed Mater. 2022-2

[8]
Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

J Biomed Mater Res A. 2011-9-20

[9]
Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.

J Biomater Sci Polym Ed. 2017-9

[10]
Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold.

Colloids Surf B Biointerfaces. 2022-9

本文引用的文献

[1]
Electrostatic attachment of exosome onto a 3D-fabricated calcium silicate/polycaprolactone for enhanced bone regeneration.

Mater Today Bio. 2024-10-1

[2]
Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids.

J Nanobiotechnology. 2024-8-21

[3]
Preparation of hydroxyapatite and its elimination of excess fluoride from aqueous solution.

RSC Adv. 2024-8-19

[4]
Multi-Tissue Integrated Tissue-Engineered Trachea Regeneration Based on 3D Printed Bioelastomer Scaffolds.

Adv Sci (Weinh). 2024-10

[5]
Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration.

J Tissue Eng. 2024-7-26

[6]
A functional mineralized collagen hydrogel to promote angiogenic and osteogenic for osseointegration of 3D-printed titanium alloy microporous scaffolds.

Int J Biol Macromol. 2024-10

[7]
PI3K/AKT/mTOR signaling regulates BCP ceramic-induced osteogenesis.

J Mater Chem B. 2024-8-7

[8]
3D-printed polycaprolactone/tricalcium silicate scaffolds modified with decellularized bone ECM-oxidized alginate for bone tissue engineering.

Int J Biol Macromol. 2024-4

[9]
Synthesis and in vitro characteristics of biogenic-derived hydroxyapatite for bone remodeling applications.

Bioprocess Biosyst Eng. 2024-1

[10]
Tetracalcium phosphate/polycaprolactone composite scaffold: Mechanical reinforcement, biodegradability regulation and bioactivity induction.

J Mech Behav Biomed Mater. 2023-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索