文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光梯度提升法与逻辑回归法在与阿尔茨海默病相关的 及诱导性牙周炎的相互作用组中心基因方面的比较。

Comparison of light gradient boosting and logistic regression for interactomic hub genes in and -induced periodontitis with Alzheimer's disease.

作者信息

Yadalam Pradeep Kumar, Chatterjee Shubhangini, Natarajan Prabhu Manickam, Ardila Carlos M

机构信息

Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Department of Clinical Sciences, Center of Medical and Bio-allied Health and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates.

出版信息

Front Oral Health. 2025 Mar 4;6:1463458. doi: 10.3389/froh.2025.1463458. eCollection 2025.


DOI:10.3389/froh.2025.1463458
PMID:40104076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11914103/
Abstract

INTRODUCTION: and Treponema species have been found to invade the central nervous system through virulence factors, causing inflammation and influencing the host immune response. interacts with astrocytes, microglia, and neurons, leading to neuroinflammation. and may also play a role in the development of Alzheimer's disease. Interactomic hub genes, central to protein-protein interaction networks, are vulnerable to perturbations, leading to diseases such as cancer, neurodegenerative disorders, and cardiovascular diseases. Machine learning can identify differentially expressed hub genes in specific conditions or diseases, providing insights into disease mechanisms and developing new therapeutic approaches. This study compares the performance of light gradient boosting and logistic regression in identifying interactomic hub genes in and -induced periodontitis with those in Alzheimer's disease. METHODS: Using the GSE222136 dataset, we analyzed differential gene expression in periodontitis and Alzheimer's disease. The GEO2R tool was used to identify differentially expressed genes under different conditions, providing insights into molecular mechanisms. Bioinformatics tools such as Cytoscape and CytoHubba were employed to create gene expression networks to identify hub genes. Logistic regression and light gradient boosting were used to predict interactomic hub genes, with outliers removed and machine learning algorithms applied. RESULTS: The data were cross-validated and divided into training and testing segments. The top hub genes identified were TNFRSF9, LZIC, TNFRSF8, SLC45A1, GPR157, and SLC25A33, which are induced by and and are responsible for endothelial dysfunction in brain cells. The accuracy of logistic regression and light gradient boosting was 67% and 60%, respectively. DISCUSSION: The logistic regression model demonstrated superior accuracy and balance compared to the light gradient boosting model, indicating its potential for future improvements in predicting hub genes in periodontal and Alzheimer's diseases.

摘要

引言:已发现梅毒螺旋体属物种通过毒力因子侵入中枢神经系统,引发炎症并影响宿主免疫反应。[具体物质1]与星形胶质细胞、小胶质细胞和神经元相互作用,导致神经炎症。[具体物质1]和[具体物质2]也可能在阿尔茨海默病的发展中起作用。相互作用组中心基因是蛋白质 - 蛋白质相互作用网络的核心,易受干扰,从而导致癌症、神经退行性疾病和心血管疾病等疾病。机器学习可以识别特定条件或疾病中差异表达的中心基因,为疾病机制提供见解并开发新的治疗方法。本研究比较了轻梯度提升和逻辑回归在识别[具体物质1]和[具体物质2]诱导的牙周炎与阿尔茨海默病中相互作用组中心基因方面的性能。 方法:使用GSE222136数据集,我们分析了牙周炎和阿尔茨海默病中的差异基因表达。GEO2R工具用于识别不同条件下的差异表达基因,以深入了解分子机制。使用Cytoscape和CytoHubba等生物信息学工具创建基因表达网络以识别中心基因。使用逻辑回归和轻梯度提升来预测相互作用组中心基因,去除异常值并应用机器学习算法。 结果:数据进行了交叉验证并分为训练和测试部分。确定的顶级中心基因是TNFRSF9、LZIC、TNFRSF8、SLC45A1、GPR157和SLC25A33,它们由[具体物质1]和[具体物质2]诱导,并负责脑细胞中的内皮功能障碍。逻辑回归和轻梯度提升的准确率分别为67%和60%。 讨论:与轻梯度提升模型相比,逻辑回归模型表现出更高的准确率和平衡性,表明其在未来预测牙周病和阿尔茨海默病中心基因方面具有改进的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/039eb2548553/froh-06-1463458-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/b9b49e162b99/froh-06-1463458-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/22a04ea746c3/froh-06-1463458-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/ea099ad60c6d/froh-06-1463458-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/039eb2548553/froh-06-1463458-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/b9b49e162b99/froh-06-1463458-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/22a04ea746c3/froh-06-1463458-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/ea099ad60c6d/froh-06-1463458-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/983a/11914103/039eb2548553/froh-06-1463458-g004.jpg

相似文献

[1]
Comparison of light gradient boosting and logistic regression for interactomic hub genes in and -induced periodontitis with Alzheimer's disease.

Front Oral Health. 2025-3-4

[2]
Coinfection with Fusobacterium nucleatum can enhance the attachment and invasion of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans to human gingival epithelial cells.

Arch Oral Biol. 2015-9

[3]
Antibacterial effect of a gingival patch containing nano-emulsion of red dragon fruit peel extract on , and assessed .

J Oral Biol Craniofac Res. 2023

[4]
Comparative virulence of periodontopathogens in a mouse abscess model.

Oral Dis. 1995-9

[5]
Potential mechanisms between periodontitis and Alzheimer's disease: a scoping review.

Can J Dent Hyg. 2023-2

[6]
Gradient boosting-based classification of interactome hub genes in periimplantitis with periodontitis - an integrated bioinformatic approach.

Front Oral Health. 2024-11-26

[7]
Immunological Pathways Triggered by and : Therapeutic Possibilities?

Mediators Inflamm. 2019-6-24

[8]
Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response.

J Clin Periodontol. 2009-5

[9]
Detection of eight periodontal microorganisms and distribution of Porphyromonas gingivalis fimA genotypes in Chinese patients with aggressive periodontitis.

J Periodontol. 2013-5-7

[10]
A three-year study on periodontal microorganisms of short locking-taper implants and adjacent teeth in patients with history of periodontitis.

J Dent. 2020-2-15

引用本文的文献

[1]
Identification and analysis of neutrophil extracellular trap-related genes in periodontitis via bioinformatics and experimental verification.

BMC Oral Health. 2025-8-6

[2]
Efficacy of antimicrobial photodynamic therapy (a-PDT) as an adjunct to scaling and root planing on clinical parameters, oxidative and anti-oxidative profile in the treatment of chronic periodontitis: a randomized controlled clinical trial.

Odontology. 2025-4-15

本文引用的文献

[1]
Enrichment of infection-associated bacteria in the low biomass brain bacteriota of Alzheimer's disease patients.

PLoS One. 2024

[2]
A novel method for sampling subgingival microbiome: a comparative metatranscriptomic study.

Biotechniques. 2024-3

[3]
Abnormal amyloid precursor protein processing in periodontal tissue in a murine model of periodontitis induced by Porphyromonas gingivalis.

J Periodontal Res. 2024-4

[4]
Periodontitis and brain magnetic resonance imaging markers of Alzheimer's disease and cognitive aging.

Alzheimers Dement. 2024-3

[5]
Porphyromonas gingivalis, neuroinflammation and Alzheimer's disease.

Niger J Physiol Sci. 2022-12-31

[6]
Oral Health as a Risk Factor for Alzheimer Disease.

J Prev Alzheimers Dis. 2024

[7]
The association between periodontitis and cerebrovascular disease, and dementia. Scientific report of the working group of the Spanish Society of Periodontology and the Spanish Society of Neurology.

Neurologia (Engl Ed). 2024-4

[8]
Community-Based Strategies to Reduce Alzheimer's Disease and Related Dementia Incidence Among Rural, Racially/Ethnically Diverse Older Adults.

Curr Geriatr Rep. 2023-12

[9]
Potential diagnostic markers and therapeutic targets for periodontitis and Alzheimer's disease based on bioinformatics analysis.

J Periodontal Res. 2024-4

[10]
Decoding the Link between Periodontitis and Neuroinflammation: The Journey of Bacterial Extracellular Vesicles.

Curr Genomics. 2023-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索