Suppr超能文献

经后路机器人辅助全髋关节置换术

Robotic-Assisted Total Hip Arthroplasty Through the Posterior Approach.

作者信息

Schwabe Maria T, Gibian Joseph T, Bartosiak Kimberly A, Bendich Ilya, Schneider Andrew M

机构信息

Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri.

出版信息

JBJS Essent Surg Tech. 2025 Mar 18;15(1). doi: 10.2106/JBJS.ST.24.00010. eCollection 2025 Jan-Mar.

Abstract

BACKGROUND

Robotic-assisted total hip arthroplasty (THA) through the posterior approach is indicated in cases of symptomatic hip arthritis. The goal of the procedure is to relieve pain and restore function while minimizing postoperative complications such as dislocation. Dislocation often occurs despite traditionally well placed components. The hip-spine relationship can be a causative factor in postoperative instability, particularly in patients with altered spinopelvic kinematics as a result of spinal fusions or degenerative spine disease, in whom component placement based on anatomic landmarks may lead to functional malpositioning. Therefore, we present our technique for robotic-assisted THA through the posterior approach, which incorporates patient-specific spinopelvic kinematic data to maximize impingement-free range of motion and minimize the risk of dislocation.

DESCRIPTION

Preoperative computed tomography (CT) scans are obtained in order to generate a 3D model of the patient's unique hip anatomy. Lateral lumbar radiographs with the patient in the sitting and standing positions are also obtained preoperatively. The sacral slope is measured in each position, imported into the robotic software, and utilized to aid in positioning the components for optimal leg length, offset, and stability of the hip replacement based on the patient's unique spino-kinematic profile. The procedure begins with 3 partially threaded pins being driven into the ipsilateral iliac crest about 2 cm posterior to the anterior superior iliac spine. The robotic pelvic array is fastened to the pins. A standard posterior approach to the hip is utilized. Skin and subcutaneous tissues are dissected down to the iliotibial band and gluteus maximus fascia. The fascia is longitudinally incised, and a small metallic pin is malleted into the distal aspect of the greater trochanter. Initial leg length and offset values are captured. The short external rotators and posterior hip capsule are elevated. The hip is dislocated, and a neck resection is made at a level determined preoperatively with use of the robotic software. The acetabulum is exposed, and osseous registration is carried out to establish a relationship between the 3D model built with use of the robotic software and the patient's anatomy in vivo. The acetabulum is single-reamed, and the final cup is impacted in the desired position. The proximal femur is broached with increasingly sized broaches until rotational and axial stability has been achieved. A trial femoral neck and head are attached to the final broach, and the hip is reduced. Posterior and anterior hip stability are assessed, and leg length and offset are rechecked via the robotic system. Once the surgeon is satisfied, the hip is dislocated, the broach is removed, and the final femoral stem and head are manually implanted. The hip is then reduced for the final time. Closure is performed according to surgeon preference.

ALTERNATIVES

Surgical alternatives include THA with use of manual instrumentation or navigation through other approaches to the hip, including the direct anterior, anterolateral, and direct lateral approaches. Nonoperative alternatives include physical therapy, the use of nonsteroidal anti-inflammatory pain medication, and intra-articular corticosteroid injections.

RATIONALE

Robotic-assisted THA is particularly advantageous in patients with abnormal spinopelvic kinematics who require precise and specific component positioning to optimize hip stability. In these patients, manually placing components relative to anatomic landmarks may lead to functional malpositioning and ultimately dislocation. Additionally, cases in which there is an anticipated difficulty in acetabular exposure or preparation because of a large body habitus or large pannus, retained acetabular hardware, or severe acetabular wear or dysplasia may benefit from the use of this technique.

EXPECTED OUTCOMES

Patients who undergo robotic-assisted THA through the posterior approach should expect excellent clinical outcomes in addition to low rates of complication and revision. Robotic-assisted THA has been shown to lower the risk of dislocation compared with manual techniques. In a study by Bendich et al., a robotic-assisted THA cohort had a 0.3 odds ratio of reoperation for dislocation compared with a manual THA cohort.

IMPORTANT TIPS

Stable array pins are critical in order to obtain accurate leg length and offset measurements intraoperatively.When registering the acetabulum via the robotic software, aim for maximum spread of captured points to ensure accuracy of cup placement.In large-statured patients or patients with a particularly stiff hip, in whom anterior femoral retraction is difficult, disconnect the reamer from the robotic arm and place it into the acetabulum by hand before reconnecting it to the robotic arm. Remove the anterior acetabular retractor and set the reaming orientation to 50° of inclination and 10° of anteversion. Final cup position is kept in the desired orientation.Remember that the robotic-assistance device is just a surgical tool, and the quality of its output relies on the quality of its input. If there is concern for an error in component placement, intraoperative radiographs should be obtained.

ACRONYMS AND ABBREVIATIONS

THA = total hip arthroplastyCT = computed tomographyDVT = deep vein thrombosisIT = iliotibial.

摘要

背景

对于有症状的髋关节炎患者,可采用机器人辅助经后路全髋关节置换术(THA)。该手术的目标是缓解疼痛并恢复功能,同时将术后诸如脱位等并发症降至最低。尽管传统上假体放置位置良好,但脱位仍经常发生。髋部与脊柱的关系可能是术后不稳定的一个致病因素,尤其是在因脊柱融合或退行性脊柱疾病导致脊柱骨盆运动学改变的患者中,基于解剖标志放置假体可能会导致功能错位。因此,我们介绍我们的机器人辅助经后路THA技术,该技术纳入了患者特定的脊柱骨盆运动学数据,以最大化无撞击活动范围并最小化脱位风险。

描述

术前获取计算机断层扫描(CT)图像,以生成患者独特的髋部解剖结构的三维模型。术前还需获取患者坐位和站立位的腰椎侧位X线片。在每个位置测量骶骨倾斜度,导入机器人软件,并用于辅助根据患者独特的脊柱运动学特征来定位假体,以实现最佳的肢体长度、偏心距和髋关节置换的稳定性。手术开始时,在髂前上棘后方约2厘米处将3枚部分螺纹的钢针打入同侧髂嵴。将机器人骨盆阵列固定在钢针上。采用标准的髋关节后路入路。将皮肤和皮下组织解剖至髂胫束和臀大肌筋膜。纵向切开筋膜,并用锤将一根小金属针打入大转子远端。记录初始肢体长度和偏心距值。抬起短外旋肌和髋关节后囊。使髋关节脱位,并在术前使用机器人软件确定的水平进行股骨颈截骨。暴露髋臼,并进行骨性配准,以建立使用机器人软件构建的三维模型与患者体内解剖结构之间的关系。对髋臼进行单次扩孔,并将最终的髋臼杯打入所需位置。用尺寸逐渐增大的髓腔锉对股骨近端进行扩髓,直至获得旋转和轴向稳定性。将试验性股骨颈和股骨头安装到最终的髓腔锉上,然后使髋关节复位。评估髋关节前后稳定性,并通过机器人系统重新检查肢体长度和偏心距。一旦外科医生满意,使髋关节脱位,取出髓腔锉,然后手动植入最终的股骨柄和股骨头。然后最后一次使髋关节复位。根据外科医生的偏好进行缝合。

替代方案

手术替代方案包括使用手动器械或通过髋关节的其他入路(包括直接前路、前外侧和直接外侧入路)进行导航的THA。非手术替代方案包括物理治疗、使用非甾体类抗炎止痛药和关节内注射皮质类固醇。

原理

机器人辅助THA在脊柱骨盆运动学异常的患者中特别有利,这些患者需要精确和特定的假体定位以优化髋关节稳定性。在这些患者中,相对于解剖标志手动放置假体可能会导致功能错位并最终导致脱位。此外,由于体型较大、滑膜皱襞较大、髋臼内固定物残留、髋臼严重磨损或发育不良等原因,预计髋臼暴露或准备存在困难的病例可能会从该技术的使用中受益。

预期结果

接受机器人辅助经后路THA的患者除了并发症和翻修率较低外,还应预期获得良好的临床结果。与手动技术相比,机器人辅助THA已被证明可降低脱位风险。在Bendich等人的一项研究中,与手动THA队列相比,机器人辅助THA队列因脱位进行再次手术的比值比为0.3。

重要提示

稳定的阵列钢针对于术中获得准确的肢体长度和偏心距测量至关重要。通过机器人软件对髋臼进行配准时,目标是使捕获点的分布最大化,以确保髋臼杯放置的准确性。在体型较大的患者或髋关节特别僵硬、难以进行股骨前方牵开的患者中,在将扩孔钻重新连接到机器人手臂之前,先将其从机器人手臂上断开,然后手动放入髋臼。移除髋臼前方牵开器,并将扩孔方向设置为倾斜50°和前倾角10°。最终髋臼杯位置保持在所需方向。记住,机器人辅助设备只是一种手术工具,其输出质量取决于其输入质量。如果担心假体放置有误,应获取术中X线片。

首字母缩略词和缩写

THA = 全髋关节置换术;CT = 计算机断层扫描;DVT = 深静脉血栓形成;IT = 髂胫束

相似文献

1
Robotic-Assisted Total Hip Arthroplasty Through the Posterior Approach.
JBJS Essent Surg Tech. 2025 Mar 18;15(1). doi: 10.2106/JBJS.ST.24.00010. eCollection 2025 Jan-Mar.
4
Anterior-Based Muscle-Sparing (ABMS) Approach for Total Hip Arthroplasty.
JBJS Essent Surg Tech. 2022 Sep 12;12(3):e21.00061. doi: 10.2106/JBJS.ST.21.00061. eCollection 2022 Jul-Sep.
5
Robotic-Assisted Single-Position Prone Lateral Lumbar Interbody Fusion: Indications, Techniques, and Outcomes.
JBJS Essent Surg Tech. 2023 Nov 15;13(4). doi: 10.2106/JBJS.ST.22.00022. eCollection 2023 Oct-Dec.
7
Extended Trochanteric Osteotomy in Revision Total Hip Arthroplasty.
JBJS Essent Surg Tech. 2023 Jul 21;13(3). doi: 10.2106/JBJS.ST.21.00003. eCollection 2023 Jul-Sep.
8
What Is the Functional Spinopelvic Relationship in Three Dimensions? A CT and EOS Study.
Clin Orthop Relat Res. 2025 Mar 28. doi: 10.1097/CORR.0000000000003473.
9
Metallic Lateralized-Offset Glenoid Reverse Shoulder Arthroplasty.
JBJS Essent Surg Tech. 2024 Jul 5;14(3). doi: 10.2106/JBJS.ST.23.00067. eCollection 2024 Jul-Sep.
10
The Safe Zone Range for Cup Anteversion Is Narrower Than for Inclination in THA.
Clin Orthop Relat Res. 2018 Feb;476(2):325-335. doi: 10.1007/s11999.0000000000000051.

本文引用的文献

1
Robotic-assisted Total Hip Arthroplasty and Spinopelvic Parameters: A Review.
Hip Pelvis. 2024 Jun 1;36(2):87-100. doi: 10.5371/hp.2024.36.2.87.
2
Comparison of Postoperative Instability and Acetabular Cup Positioning in Robotic-Assisted Versus Traditional Total Hip Arthroplasty.
J Arthroplasty. 2022 Aug;37(8S):S881-S889. doi: 10.1016/j.arth.2022.02.002. Epub 2022 Feb 8.
4
Robotic arm-assisted versus manual total hip arthroplasty : a systematic review and meta-analysis.
Bone Joint J. 2021 Jun;103-B(6):1009-1020. doi: 10.1302/0301-620X.103B6.BJJ-2020-1856.R1.
5
Lumbar fusion involving the sacrum increases dislocation risk in primary total hip arthroplasty.
Bone Joint J. 2019 Feb;101-B(2):198-206. doi: 10.1302/0301-620X.101B2.BJJ-2018-0754.R1.
6
Management of Osteoarthritis of the Hip.
J Am Acad Orthop Surg. 2018 Oct 15;26(20):e434-e436. doi: 10.5435/JAAOS-D-18-00351.
7
Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion.
Bone Joint J. 2017 May;99-B(5):585-591. doi: 10.1302/0301-620X.99B5.BJJ-2016-0657.R1.
8
No Difference in Dislocation Seen in Anterior Vs Posterior Approach Total Hip Arthroplasty.
J Arthroplasty. 2016 Sep;31(9 Suppl):127-30. doi: 10.1016/j.arth.2016.02.071. Epub 2016 Mar 15.
10
Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty.
J Arthroplasty. 2013 Oct;28(9):1634-8. doi: 10.1016/j.arth.2013.01.034. Epub 2013 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验