Suppr超能文献

通过联合对比增强超声和临床数据提高浸润性乳腺癌的预后准确性:一项多中心回顾性研究

Enhancing prognostic accuracy in invasive breast cancer by combining contrast-enhanced ultrasound and clinical data: a multicenter retrospective study.

作者信息

Li Shiyu, Li Yueming, Fang Yongqi, Jin Zhiying, Huang Sisi, Wang Wei, Mokbel Kefah, Xu Yongjie, Yang Hua, Wang Zhili

机构信息

PLA Medical School, Beijing, China.

Department of Ultrasound, The First Medical Center of PLA General Hospital, Beijing, China.

出版信息

Transl Cancer Res. 2025 Feb 28;14(2):1336-1358. doi: 10.21037/tcr-2025-96. Epub 2025 Feb 26.

Abstract

BACKGROUND

Current predictive models for disease-free survival (DFS) in invasive breast cancer predominantly utilize clinical and pathological factors, with minimal incorporation of ultrasound (US) and contrast-enhanced ultrasound (CEUS) characteristics. This study aimed to establish a multimodal map integrating US, clinical features, and US data to enhance the prediction of DFS in invasive breast cancer.

METHODS

The study utilized three retrospective datasets obtained from three academic medical centers, covering the period from March 2014 to December 2022. Clinical data, gray scale US, and CEUS were assessed in 942 adult patients undergoing breast cancer resection. The training and internal test sets were supplied by The First Medical Center of the PLA General Hospital, while the external test sets were sourced from The Fourth Medical Center of the PLA General Hospital and the Specialist Medical Center of the Strategic Support Forces. The patients were followed up by phone or clinic visits. DFS was evaluated as a prognostic outcome. Cox regression analysis identified prognostic factors, leading to the construction of three nomograms. The model performance was evaluated using the C-index, time-dependent receiver operating characteristic (ROC) curve, calibration, decision curve analysis (DCA), integrated discrimination improvement (IDI), and net reclassification index (NRI).

RESULTS

A total of 942 patients were enrolled, with a mean age of 51.91 years [interquartile range (IQR), 44.25-58.69 years]. The patients were included with the median DFS of 36 months. Cox regression analysis identified menopausal status, body mass index (BMI), color Doppler flow imaging (CDFI), tumor size on CEUS, adjuvant/neoadjuvant chemotherapy, progesterone receptor (PR) status, and tumor-node-metastasis (TNM) staging as significant risk factors for invasive breast cancer. The nomogram combining US, CEUS, and clinical data demonstrated excellent predictive performance, achieving a C-index of 0.811 in the training set, 0.816 in the internal validation set, and 0.819 in the external validation set. Calibration curves confirmed that the predicted survival probabilities aligned closely with observed outcomes. Comparative analysis of ROC curves, IDI, NRI, and DCA confirmed that the integrated nomogram outperformed models based solely on US and clinical data or clinical data alone in predicting 24- and 36-month DFS.

CONCLUSIONS

The integration of CEUS and clinical factors for non-invasive DFS prediction improves personalized risk stratification, minimizing unnecessary interventions for low-risk patients and ensuring adequate monitoring for high-risk individuals. Additional prospective validation is required to establish its clinical applicability and incorporation into standard oncology practice.

摘要

背景

目前用于浸润性乳腺癌无病生存期(DFS)的预测模型主要利用临床和病理因素,极少纳入超声(US)和超声造影(CEUS)特征。本研究旨在建立一种整合US、临床特征和US数据的多模态图谱,以增强对浸润性乳腺癌DFS的预测。

方法

本研究使用了从三个学术医疗中心获取的三个回顾性数据集,涵盖2014年3月至2022年12月期间。对942例接受乳腺癌切除术的成年患者评估了临床数据、灰阶US和CEUS。训练集和内部测试集由中国人民解放军总医院第一医学中心提供,而外部测试集来自中国人民解放军总医院第四医学中心和战略支援部队特色医学中心。通过电话或门诊随访患者。将DFS评估为预后结果。Cox回归分析确定预后因素,从而构建三个列线图。使用C指数、时间依赖性受试者工作特征(ROC)曲线、校准、决策曲线分析(DCA)、综合判别改善(IDI)和净重新分类指数(NRI)评估模型性能。

结果

共纳入942例患者,平均年龄51.91岁[四分位数间距(IQR),44.25 - 58.69岁]。患者的DFS中位数为36个月。Cox回归分析确定绝经状态、体重指数(BMI)、彩色多普勒血流成像(CDFI)、CEUS上的肿瘤大小、辅助/新辅助化疗、孕激素受体(PR)状态和肿瘤-淋巴结-转移(TNM)分期为浸润性乳腺癌的显著危险因素。结合US、CEUS和临床数据的列线图显示出优异的预测性能,在训练集中C指数为0.811,在内部验证集中为0.816,在外部验证集中为0.819。校准曲线证实预测的生存概率与观察结果密切相符。ROC曲线、IDI、NRI和DCA的比较分析证实,在预测24个月和36个月DFS时,综合列线图优于仅基于US和临床数据或仅基于临床数据的模型。

结论

整合CEUS和临床因素进行无创DFS预测可改善个性化风险分层,将低风险患者的不必要干预降至最低,并确保对高风险个体进行充分监测。需要进一步的前瞻性验证来确定其临床适用性并将其纳入标准肿瘤学实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe3/11912060/22f1e57dfd03/tcr-14-02-1336-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验