Suppr超能文献

预测局部晚期不可切除食管癌患者癌症特异性生存的列线图:开发与验证研究

A nomogram for predicting cancer-specific survival in patients with locally advanced unresectable esophageal cancer: development and validation study.

作者信息

Xie Liangyun, Zhang Yafei, Niu Xiedong, Jiang Xiaomei, Kang Yuan, Diao Xinyue, Fang Jinhai, Yu Yilin, Yao Jun

机构信息

The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.

Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China.

出版信息

Front Immunol. 2025 Feb 14;16:1524439. doi: 10.3389/fimmu.2025.1524439. eCollection 2025.

Abstract

BACKGROUND

Immunotherapy research for esophageal cancer is progressing rapidly, particularly for locally advanced unresectable cases. Despite these advances, the prognosis remains poor, and traditional staging systems like AJCC inadequately predict outcomes. This study aims to develop and validate a nomogram to predict cancer-specific survival (CSS) in these patients.

METHODS

Clinicopathological and survival data for patients diagnosed between 2010 and 2021 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Patients were divided into a training cohort (70%) and a validation cohort (30%). Prognostic factors were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. A nomogram was constructed based on the training cohort and evaluated using the concordance index (C-index), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration plots, and area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival curves were used to validate the prognostic factors.

RESULTS

The study included 4,258 patients, and LASSO-Cox regression identified 10 prognostic factors: age, marital status, tumor location, tumor size, pathological grade, T stage, American Joint Committee on Cancer (AJCC) stage, SEER stage, chemotherapy, and radiotherapy. The nomogram achieved a C-index of 0.660 (training set) and 0.653 (validation set), and 1-, 3-, and 5-year AUC values exceeded 0.65. Calibration curves showed a good fit, and decision curve analysis (DCA), IDI, and NRI indicated that the nomogram outperformed traditional AJCC staging in predicting prognosis.

CONCLUSIONS

We developed and validated an effective nomogram model for predicting CSS in patients with locally advanced unresectable esophageal cancer. This model demonstrated significantly superior predictive performance compared to the traditional AJCC staging system. Future research should focus on integrating emerging biomarkers, such as PD-L1 expression and tumor mutational burden (TMB), into prognostic models to enhance their predictive accuracy and adapt to the evolving landscape of immunotherapy in esophageal cancer management.

摘要

背景

食管癌免疫治疗研究进展迅速,尤其是针对局部晚期不可切除病例。尽管取得了这些进展,但预后仍然很差,像美国癌症联合委员会(AJCC)这样的传统分期系统对预后的预测并不充分。本研究旨在开发并验证一种列线图,以预测这些患者的癌症特异性生存(CSS)。

方法

从监测、流行病学和最终结果(SEER)数据库中提取2010年至2021年期间诊断的患者的临床病理和生存数据。患者被分为训练队列(70%)和验证队列(30%)。使用最小绝对收缩和选择算子(LASSO)回归确定预后因素。基于训练队列构建列线图,并使用一致性指数(C指数)、净重新分类改善(NRI)、综合判别改善(IDI)、校准图和受试者工作特征曲线下面积(AUC)进行评估。采用Kaplan-Meier生存曲线验证预后因素。

结果

该研究纳入了4258例患者,LASSO-Cox回归确定了10个预后因素:年龄、婚姻状况、肿瘤位置、肿瘤大小、病理分级、T分期、美国癌症联合委员会(AJCC)分期、SEER分期、化疗和放疗。列线图在训练集的C指数为0.660,在验证集为0.653,1年、3年和5年的AUC值超过0.65。校准曲线显示拟合良好,决策曲线分析(DCA)、IDI和NRI表明列线图在预测预后方面优于传统的AJCC分期。

结论

我们开发并验证了一种有效的列线图模型,用于预测局部晚期不可切除食管癌患者的CSS。该模型在预测性能上明显优于传统的AJCC分期系统。未来的研究应侧重于将新兴生物标志物,如程序性死亡受体配体1(PD-L1)表达和肿瘤突变负荷(TMB),纳入预后模型,以提高其预测准确性,并适应食管癌免疫治疗不断变化的格局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d1/11868048/dfcdd99487d5/fimmu-16-1524439-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验