文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于慢性脊髓神经调节的有源电子高密度硬膜外电极板阵列。

An active electronic, high-density epidural paddle array for chronic spinal cord neuromodulation.

作者信息

Parker Samuel R, Calvert Jonathan S, Darie Radu, Jang Jaeson, Govindarajan Lakshmi Narasimhan, Angelino Keith, Chitnis Girish, Iyassu Yohannes, Shaaya Elias, Fridley Jared S, Serre Thomas, Borton David A, McLaughlin Bryan L

机构信息

School of Engineering, Brown University, Providence, RI, United States of America.

Cognitive & Psychological Sciences, Brown University, Providence, RI, United States of America.

出版信息

J Neural Eng. 2025 Mar 19;22(2):026023. doi: 10.1088/1741-2552/adba8b.


DOI:10.1088/1741-2552/adba8b
PMID:40104941
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11920892/
Abstract

. Epidural electrical stimulation (EES) has shown promise as both a clinical therapy and research tool for studying nervous system function. However, available clinical EES paddles are limited to using a small number of contacts due to the burden of wires necessary to connect each contact to the therapeutic delivery device, limiting the treatment area or density of epidural electrode arrays. We aimed to eliminate this burden using advanced on-paddle electronics.. We developed a smart EES paddle with a 60-electrode programmable array, addressable using an active electronic multiplexer embedded within the electrode paddle body. The electronics are sealed in novel, ultra-low profile hermetic packaging. We conducted extensive reliability testing on the novel array, including a battery of ISO 10993-1 biocompatibility tests and determination of the hermetic package leak rate. We then evaluated the EES device, placed on the epidural surface of the ovine lumbosacral spinal cord for 15 months.The active paddle array performed nominally when implanted in sheep for over 15 months and no device-related malfunctions were observed. The onboard multiplexer enabled bespoke electrode arrangements across, and within, experimental sessions. We identified stereotyped responses to stimulation in lower extremity musculature, and examined local field potential responses to EES using high-density recording bipoles. Finally, spatial electrode encoding enabled machine learning models to accurately perform EES parameter inference for unseen stimulation electrodes, reducing the need for extensive training data in future deep models.. We report the development and chronic large animalevaluation of a high-density EES paddle array containing active electronics. Our results provide a foundation for more advanced computation and processing to be integrated directly into devices implanted at the neural interface, opening new avenues for the study of nervous system function and new therapies to treat neural injury and dysfunction.

摘要

硬膜外电刺激(EES)作为一种临床治疗方法和研究神经系统功能的研究工具已显示出前景。然而,由于将每个触点连接到治疗输送设备所需的电线负担,现有的临床EES极板仅限于使用少量触点,这限制了硬膜外电极阵列的治疗面积或密度。我们旨在使用先进的极板上电子设备消除这种负担。我们开发了一种智能EES极板,其具有60电极可编程阵列,可使用嵌入在电极极板主体内的有源电子多路复用器进行寻址。电子设备密封在新型超薄气密包装中。我们对新型阵列进行了广泛的可靠性测试,包括一系列ISO 10993-1生物相容性测试以及确定气密包装的泄漏率。然后,我们评估了放置在绵羊腰骶部脊髓硬膜外表面15个月的EES设备。当植入绵羊体内超过15个月时,有源极板阵列表现正常,未观察到与设备相关的故障。板载多路复用器能够在实验过程中以及实验过程内进行定制电极排列。我们确定了下肢肌肉组织对刺激的刻板反应,并使用高密度记录双极电极检查了对EES的局部场电位反应。最后,空间电极编码使机器学习模型能够准确地对未见过的刺激电极进行EES参数推断,减少了未来深度模型中对大量训练数据的需求。我们报告了一种包含有源电子设备的高密度EES极板阵列的开发和长期大型动物评估。我们的结果为将更先进的计算和处理直接集成到植入神经接口的设备中奠定了基础,为研究神经系统功能和治疗神经损伤及功能障碍的新疗法开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/347b279c901c/jneadba8bf5_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/43d2e37dd366/jneadba8bf1_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/e15b254cf3d0/jneadba8bf2_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/05b88a62206a/jneadba8bf3_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/7297ea99ecc2/jneadba8bf4_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/347b279c901c/jneadba8bf5_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/43d2e37dd366/jneadba8bf1_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/e15b254cf3d0/jneadba8bf2_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/05b88a62206a/jneadba8bf3_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/7297ea99ecc2/jneadba8bf4_hr.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ad/11920892/347b279c901c/jneadba8bf5_hr.jpg

相似文献

[1]
An active electronic, high-density epidural paddle array for chronic spinal cord neuromodulation.

J Neural Eng. 2025-3-19

[2]
An active electronic, high-density epidural paddle array for chronic spinal cord neuromodulation.

bioRxiv. 2024-10-2

[3]
Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis.

J Neurotrauma. 2018-12-15

[4]
Fast inference of spinal neuromodulation for motor control using amortized neural networks.

J Neural Eng. 2022-10-18

[5]
The prospective evaluation of safety and success of a new method of introducing percutaneous paddle leads and complex arrays with an epidural access system.

Neuromodulation. 2012

[6]
New technique for open placement of paddle-type spinal cord stimulator electrode in presence of epidural scar tissue.

Neuromodulation. 2014-4-11

[7]
Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.

J Neuroeng Rehabil. 2013-1-21

[8]
Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury.

Neuromodulation. 2019-4

[9]
A computational model for epidural electrical stimulation of spinal sensorimotor circuits.

J Neurosci. 2013-12-4

[10]
Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans.

J Spinal Cord Med. 2021-9

本文引用的文献

[1]
Correction: The role of spinal cord neuroanatomy in the variances of epidural spinal recordings.

Bioelectron Med. 2024-8-7

[2]
Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.

Microsyst Nanoeng. 2024-6-27

[3]
Flexible circumferential bioelectronics to enable 360-degree recording and stimulation of the spinal cord.

Sci Adv. 2024-5-10

[4]
High-density cortical µECoG arrays concurrently track spreading depolarizations and long-term evolution of stroke in awake rats.

Commun Biol. 2024-3-4

[5]
Cervical Spinal Cord Stimulation: A Review.

Curr Pain Headache Rep. 2024-4

[6]
Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation.

Nat Biomed Eng. 2024-8

[7]
First Report on Real-World Outcomes with Evoked Compound Action Potential (ECAP)-Controlled Closed-Loop Spinal Cord Stimulation for Treatment of Chronic Pain.

Pain Ther. 2023-10

[8]
Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration.

J Neural Eng. 2023-7-25

[9]
Walking naturally after spinal cord injury using a brain-spine interface.

Nature. 2023-6

[10]
Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys.

Cell Rep Med. 2023-4-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索