Suppr超能文献

碳酸氢盐与硝酸盐的共还原耦合用于高效尿素合成。

Co-reduction coupling of bicarbonate and nitrate toward efficient urea synthesis.

作者信息

Wang Xue, Zhao Lu-Kang, Li Siyao, Wei Ran, Gao Xuan-Wen, Liu Zhaomeng, Luo Wen-Bin

机构信息

Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Liaoning, 110819, China.

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China.

出版信息

Nanoscale. 2025 Apr 10;17(15):9086-9093. doi: 10.1039/d4nr05196c.

Abstract

The electrocatalytic reduction of carbon dioxide (CO) and different nitrogenous substances has shown a broad prospect in replacing the traditional urea synthesis process, but there are still serious challenges in mass transfer at the gas-liquid-solid interface. The conversion of bicarbonate (HCO) and nitrate (NO) into urea the C-N coupling process under environmental conditions is a promising alternative to traditional industrial urea synthesis, which uses CO as the carbon source. However, initiating the C-N coupling reaction through the adsorption and activation of HCO and NO is considerably challenging. Designing and engineering highly selective and active electrocatalysts are necessary to accelerate electrochemical urea synthesis. Herein, we constructed a Mott-Schottky heterogeneous catalyst by loading Cu nanoparticles onto WN nanosheets (Cu-WN), achieving an excellent faradaic efficiency (FE) of 15.9% and urea yield rate of 421 μg h mg at -0.3 V RHE, outperforming the majority of reported electrocatalysts. Results show that the spatial charge region induced by the Mott-Schottky heterostructure facilitates the simultaneous adsorption and activation of HCO and NO, accelerating the multiple-electron transfer process. This work furnishes a promising impetus for the advancement of urea electrosynthesis electrochemical C-N coupling under ambient conditions.

摘要

二氧化碳(CO₂)和不同含氮物质的电催化还原在取代传统尿素合成工艺方面展现出广阔前景,但在气-液-固界面的传质过程中仍存在严峻挑战。在环境条件下将碳酸氢根(HCO₃⁻)和硝酸根(NO₃⁻)转化为尿素——即C-N偶联过程,是传统以CO₂为碳源的工业尿素合成的一个有前景的替代方案。然而,通过HCO₃⁻和NO₃⁻的吸附和活化引发C-N偶联反应极具挑战性。设计和构建高选择性和活性的电催化剂对于加速电化学尿素合成是必要的。在此,我们通过将铜纳米颗粒负载到WN纳米片上构建了一种莫特-肖特基异质催化剂(Cu-WN),在相对于可逆氢电极(RHE)为-0.3 V时实现了15.9%的优异法拉第效率(FE)和421 μg h⁻¹ mg⁻¹的尿素产率,优于大多数已报道的电催化剂。结果表明,莫特-肖特基异质结构诱导的空间电荷区域促进了HCO₃⁻和NO₃⁻的同时吸附和活化,加速了多电子转移过程。这项工作为在环境条件下推进尿素电合成——即电化学C-N偶联提供了有前景的推动力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验