Cheng Kevin J, Shastry Shashank, Campolargo Juan David, Hallock Michael J, Pogorelov Taras V
Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Biochemistry. 2025 Apr 1;64(7):1484-1500. doi: 10.1021/acs.biochem.4c00452. Epub 2025 Mar 19.
Antimicrobial peptides (AMPs) have emerged as a promising solution to the escalating public health threat caused by multidrug-resistant bacteria. Although ongoing research efforts have established AMP's role in membrane permeabilization and leakage, the precise mechanisms driving these disruption patterns remain unclear. We leverage molecular dynamics (MD) simulations enhanced by membrane mimetic (HMMM) to systematically investigate how the physiochemical properties of magainin (+3) and pexiganan (+9) affect their localization, insertion, curvature perturbation, and membrane binding ensemble. Building on existing microbiology, NMR, circular dichroism, and fluorescence data, our analysis reveals that the lipid makeup is a key determinant in the binding dynamics and structural conformation of AMPs. We find that phospholipid type is crucial for peptide localization, demonstrated through magainin's predominant interaction with lipid tails and pexiganan's with polar headgroups in POPC/POPS membranes. The membrane curvature changes induced by pexiganan relative to magainin suggest that AMPs with larger charges have more potential in modulating bilayer bending. These insights advance our understanding of AMP-membrane interactions at the molecular level, offering guidance for the design of targeted antimicrobial therapies.
抗菌肽(AMPs)已成为应对多重耐药细菌所带来的不断升级的公共卫生威胁的一种有前景的解决方案。尽管目前的研究工作已确定了AMPs在膜通透性和渗漏方面的作用,但驱动这些破坏模式的确切机制仍不清楚。我们利用膜模拟增强分子动力学(MD)模拟(HMMM)来系统地研究蛙皮素(+3)和派罗星(+9)的物理化学性质如何影响它们的定位、插入、曲率扰动和膜结合模式。基于现有的微生物学、核磁共振、圆二色性和荧光数据,我们的分析表明,脂质组成是AMPs结合动力学和结构构象的关键决定因素。我们发现,磷脂类型对于肽的定位至关重要,这通过蛙皮素在POPC/POPS膜中与脂质尾部的主要相互作用以及派罗星与极性头部基团的相互作用得到证明。派罗星相对于蛙皮素诱导的膜曲率变化表明,电荷较大的AMPs在调节双层弯曲方面具有更大的潜力。这些见解在分子水平上推进了我们对AMPs与膜相互作用的理解,为靶向抗菌疗法的设计提供了指导。