Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
J Chem Inf Model. 2024 Jun 24;64(12):4822-4834. doi: 10.1021/acs.jcim.4c00619. Epub 2024 Jun 6.
Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human β-adrenergic receptor (βAR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.
胆固醇(CHL)在调节各种哺乳动物膜蛋白的功能和活性方面起着不可或缺的作用。由于脂质的动力学较慢,传统的蛋白质-CHL 相互作用的计算研究依赖于长时间尺度的原子模拟或粗粒化近似来采样该过程。已经开发了一种高迁移性膜模拟物(HMMM)来增强脂质扩散,从而用于促进与外周膜蛋白的脂质相互作用的研究,并且使用定制溶剂代替磷脂尾部,与整合膜蛋白一起使用。在这里,我们报告了一种更新的 HMMM 模型,该模型能够包含膜的非磷脂成分胆固醇(CHL),此后称为 HMMM-CHL。为此,我们必须优化定制溶剂对膜中 CHL 行为的影响。此外,新溶剂与基于力的切换协议的模拟兼容。在 HMMM-CHL 中,整合了改善的 CHL 动力学和加速的脂质扩散。为了测试更新的模型,我们已经将其应用于两种膜蛋白系统(人β-肾上腺素能受体(βAR)和线粒体电压依赖性阴离子通道 1(VDAC-1))中蛋白质-CHL 相互作用的表征。我们的 HMMM-CHL 模拟成功地确定了 CHL 结合位点,并与实验数据以及其他模拟结果极好地一致地捕获了详细的 CHL 相互作用,表明改进模型在需要增强蛋白质-CHL 相互作用采样的应用中是有用的。