Suppr超能文献

全面的突变体化学分型揭示了一个谱系特异性生物合成基因簇嵌入更广泛的植物代谢中。

Comprehensive mutant chemotyping reveals embedding of a lineage-specific biosynthetic gene cluster in wider plant metabolism.

作者信息

Qiao Xue, Houghton Alan, Reed James, Steuernagel Burkhard, Zhang Jiahe, Owen Charlotte, Leveau Aymeric, Orme Anastasia, Louveau Thomas, Melton Rachel, Wulff Brande B H, Osbourn Anne

机构信息

Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom.

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2417588122. doi: 10.1073/pnas.2417588122. Epub 2025 Mar 19.

Abstract

Plants produce diverse specialized metabolites with important ecological functions. It has recently become apparent that the genes for many of these pathways are not dispersed in plant genomes, but rather are arranged like beads on a string in biosynthetic gene clusters (BGCs). Pathways encoded by BGCs are as a rule dedicated linear pathways that do not form parts of wider metabolic networks. In contrast, the genes for the biosynthesis of widely distributed more ancestral metabolites such as carotenoids and anthocyanins are not clustered. Little is known about how these more recently evolved clustered pathways interact with general plant metabolism. We recently characterized a 12-gene BGC for the biosynthesis of the antimicrobial defense compound avenacin A-1, a triterpene glycoside produced by oats. Avenacin A-1 is acylated with the fluorophore -methyl anthranilate and confers bright blue fluorescence of oat root tips under ultraviolet light. Here, we exploit a suite of >100 avenacin-deficient mutants identified by screening for reduced root fluorescence to identify genes required for the function of this paradigm BGC. Using a combination of mutant chemotyping, biochemical and molecular analysis, and genome resequencing, we identify two nonclustered genes ( and ) encoding enzymes that synthesize the donors required for avenacin glycosylation and acylation (recruited from the phenylpropanoid and tryptophan pathways). Our finding of these Cluster Auxiliary Enzymes (CAEs) provides insights into the interplay between general plant metabolism and a newly evolved lineage-specific BGC.

摘要

植物产生具有重要生态功能的多种特殊代谢产物。最近很明显的是,许多这些代谢途径的基因并非分散在植物基因组中,而是像串珠一样排列在生物合成基因簇(BGCs)中。BGCs编码的代谢途径通常是专门的线性途径,不构成更广泛代谢网络的一部分。相比之下,类胡萝卜素和花青素等分布广泛的更古老代谢产物的生物合成基因并不成簇。关于这些最近进化出的成簇途径如何与一般植物代谢相互作用,我们知之甚少。我们最近鉴定了一个由12个基因组成的BGC,用于抗菌防御化合物燕麦素A-1的生物合成,燕麦素A-1是燕麦产生的一种三萜糖苷。燕麦素A-1被荧光团邻氨基苯甲酸甲酯酰化,并在紫外光下使燕麦根尖发出亮蓝色荧光。在这里,我们利用通过筛选根系荧光减弱鉴定出的100多个燕麦素缺陷型突变体,来确定这个典型BGC功能所需的基因。通过结合突变体化学分型、生化和分子分析以及基因组重测序,我们鉴定出两个非成簇基因(和),它们编码合成燕麦素糖基化和酰化所需供体的酶(从苯丙烷类和色氨酸途径招募)。我们对这些簇辅助酶(CAEs)的发现为一般植物代谢与新进化出的谱系特异性BGC之间的相互作用提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7fe/11962460/1b829621c10a/pnas.2417588122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验