Luo Zhenwang, Wang Weisheng, Wu Junhui, Ma Guohua, Hou Yanna, Yang Cheng, Wang Xu, Zheng Fei, Zhao Zhenfu, Zhao Ziqi, Zhu Liqiang, Hu Ziyang
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
ACS Appl Mater Interfaces. 2025 Apr 2;17(13):19879-19891. doi: 10.1021/acsami.4c21159. Epub 2025 Mar 19.
The increasing computational demands of artificial intelligence (AI) algorithms are exceeding the capabilities of conventional computing architectures, creating a strong need for novel materials and paradigms. Memristors that integrate diverse resistive switching (RS) behaviors provide a promising avenue for developing novel computing architectures. In this study, we achieve the coexistence of volatile and nonvolatile RS behaviors in quasi-2D perovskite memristor (Q-2DPM). The Q-2DPM exhibits competitive performance as a nonvolatile memory. Multiple synaptic functions have been successfully simulated on Q-2DPM, such as excitatory postsynaptic currents, paired-pulse facilitation, and long-term potentiation/depression. Furthermore, artificial neural networks using Q-2DPM synapses achieve high accuracy in MNIST image classification tasks. The Q-2DPM's inherent characteristics suitable for reservoir computing are also demonstrated through its application in a pulse-stream-based digital classification experiment, showcasing its impressive performance. The elucidation of the dual RS mechanisms within Q-2DPM provides fresh insights into memristor RS behavior and underscores the potential of achieving diverse computational units through a single device. This work paves the way for the implementation of physical neuromorphic hardware architectures and the advancement of sophisticated computational primitives, offering a significant step toward the next generation of computing technologies.
人工智能(AI)算法对计算能力的需求不断增加,已超出传统计算架构的能力范围,这就迫切需要新型材料和计算范式。集成多种电阻开关(RS)行为的忆阻器为开发新型计算架构提供了一条很有前景的途径。在本研究中,我们在准二维钙钛矿忆阻器(Q-2DPM)中实现了挥发性和非挥发性RS行为的共存。Q-2DPM作为一种非易失性存储器表现出具有竞争力的性能。已在Q-2DPM上成功模拟了多种突触功能,如兴奋性突触后电流、双脉冲易化以及长时程增强/抑制。此外,使用Q-2DPM突触的人工神经网络在MNIST图像分类任务中实现了高精度。通过在基于脉冲流的数字分类实验中的应用,还展示了Q-2DPM适用于储层计算的固有特性,展现出其令人印象深刻的性能。对Q-2DPM内双重RS机制的阐释为忆阻器RS行为提供了新的见解,并突出了通过单个器件实现多种计算单元的潜力。这项工作为物理神经形态硬件架构的实现以及复杂计算原语的发展铺平了道路,朝着下一代计算技术迈出了重要一步。