Suppr超能文献

基于代谢组学和蛋白质组学的结直肠癌预测与诊断疾病诊断分类模型

Metabolomics- and Proteomics-Based Disease Diagnostic Classifier Model for the Prediction and Diagnosis of Colorectal Carcinoma.

作者信息

Wang Zhaorui, Li Tianyuan, Sun Mengyao, Liu Na, Zhang Haozhe, Feng Zhikun, Lei Ningjing

机构信息

Translational Medicine Research Center, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China.

Department of Gastroenterology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China.

出版信息

J Proteome Res. 2025 Apr 4;24(4):2096-2111. doi: 10.1021/acs.jproteome.5c00010. Epub 2025 Mar 19.

Abstract

BACKGROUND

Colorectal carcinoma (CRC) is a leading cause of cancer-related deaths globally. Diagnostic biomarkers are essential for risk stratification and early detection, potentially enhancing patient survival. Our study aimed to explore the potential biomarkers of CRC at the protein and metabolic levels.

METHODS

Blood serum from CRC patients and healthy controls was analyzed using metabolomic and proteomic techniques. A conjoint analysis was conducted, and samples were split into training and validation sets (7:3 ratio) to develop and evaluate a disease diagnosis classifier model. Immunohistochemistry (IHC) analyses were conducted to validate the results.

RESULTS

We identified 631 differential metabolites and 61 differentially expressed proteins (DEPs) in CRC, involved in pathways such as arginine and proline metabolism, central carbon metabolism in cancer, and signaling pathways including TGF-β, mTOR, PI3K-Akt, and others. Key proteins (CILP2, SLC3A2, EXTL2, hydroxypyruvate isomerase (HYI), ENPEP, LRG1, CTSS, thyrotropin-releasing hormone-degrading ectoenzyme (TRHDE), SELE, and HSPA1A) showed significant expression differences between CRC patients and controls. IHC results showed that compared with the paracancerous tissues, the expression of CILP2, EXTL2, and HYI was significantly downregulated in the CRC tissues ( < 0.05). The classifier model, comprising l-arginine, Harden-Young ester, l-aspartic acid, oxoglutaric acid, l-proline, octopine, l-valine, and progesterone, achieved AUC values of 0.998 and 0.914 in training and validation data sets, respectively.

CONCLUSIONS

The identified metabolites and DEPs are promising CRC biomarkers. The developed classifier model based on eight metabolites demonstrates high accuracy for CRC assessment and diagnosis.

摘要

背景

结直肠癌(CRC)是全球癌症相关死亡的主要原因之一。诊断生物标志物对于风险分层和早期检测至关重要,可能会提高患者生存率。我们的研究旨在探索CRC在蛋白质和代谢水平上的潜在生物标志物。

方法

使用代谢组学和蛋白质组学技术分析CRC患者和健康对照者的血清。进行联合分析,并将样本按7:3的比例分为训练集和验证集,以开发和评估疾病诊断分类模型。进行免疫组织化学(IHC)分析以验证结果。

结果

我们在CRC中鉴定出631种差异代谢物和61种差异表达蛋白(DEPs),它们参与精氨酸和脯氨酸代谢、癌症中的中心碳代谢以及包括TGF-β、mTOR、PI3K-Akt等在内的信号通路。关键蛋白(CILP2、SLC3A2、EXTL2、羟基丙酮酸异构酶(HYI)、ENPEP、LRG1、CTSS、促甲状腺激素释放激素降解外切酶(TRHDE)、SELE和HSPA1A)在CRC患者和对照之间表现出显著的表达差异。IHC结果显示,与癌旁组织相比,CILP2、EXTL2和HYI在CRC组织中的表达显著下调(<0.05)。由L-精氨酸、哈丁-扬酯、L-天冬氨酸、草酰戊二酸、L-脯氨酸、章鱼碱、L-缬氨酸和孕酮组成的分类模型在训练集和验证数据集中的AUC值分别为0.998和0.914。

结论

鉴定出的代谢物和DEPs是有前景的CRC生物标志物。基于八种代谢物开发的分类模型在CRC评估和诊断中显示出高准确性。

相似文献

1
Metabolomics- and Proteomics-Based Disease Diagnostic Classifier Model for the Prediction and Diagnosis of Colorectal Carcinoma.
J Proteome Res. 2025 Apr 4;24(4):2096-2111. doi: 10.1021/acs.jproteome.5c00010. Epub 2025 Mar 19.
2
Identification of Salivary Biomarkers in Colorectal Cancer by Integrating Olink Proteomics and Metabolomics.
J Proteome Res. 2025 May 2;24(5):2542-2552. doi: 10.1021/acs.jproteome.5c00091. Epub 2025 Apr 4.
3
Serum metabolic characteristics associated with the deterioration of colorectal adenomas.
Sci Rep. 2025 Feb 26;15(1):6845. doi: 10.1038/s41598-025-91444-8.
4
Metabolomic Profiling Identified Serum Metabolite Biomarkers and Related Metabolic Pathways of Colorectal Cancer.
Dis Markers. 2021 Dec 7;2021:6858809. doi: 10.1155/2021/6858809. eCollection 2021.
5
6
Multiomics Approach Identifies Key Proteins and Regulatory Pathways in Colorectal Cancer.
J Proteome Res. 2025 Jan 3;24(1):356-367. doi: 10.1021/acs.jproteome.4c00902. Epub 2024 Dec 19.
7
Metabolic phenotyping to monitor chronic enteritis canceration.
Metabolomics. 2020 Feb 24;16(3):29. doi: 10.1007/s11306-020-1651-x.
8
A quantitative multimodal metabolomic assay for colorectal cancer.
BMC Cancer. 2018 Jan 4;18(1):26. doi: 10.1186/s12885-017-3923-z.

本文引用的文献

1
Oncogenic microRNA-1290 and Gene as Potential Biomarker for Colorectal Carcinoma.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241286283. doi: 10.1177/15330338241286283.
2
17β-estradiol in colorectal cancer: friend or foe?
Cell Commun Signal. 2024 Jul 19;22(1):367. doi: 10.1186/s12964-024-01745-0.
3
Targeting valine catabolism to inhibit metabolic reprogramming in prostate cancer.
Cell Death Dis. 2024 Jul 18;15(7):513. doi: 10.1038/s41419-024-06893-2.
4
TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities.
Int J Mol Sci. 2024 Jul 5;25(13):7400. doi: 10.3390/ijms25137400.
5
6
PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment.
Int J Mol Sci. 2024 Mar 9;25(6):3178. doi: 10.3390/ijms25063178.
7
Serum protein biomarkers for HCC risk prediction in HIV/HBV co-infected people: a clinical proteomic study using mass spectrometry.
Front Immunol. 2023 Nov 10;14:1282469. doi: 10.3389/fimmu.2023.1282469. eCollection 2023.
8
LRG1 predicts the prognosis and is associated with immune infiltration in thyroid cancer: a bioinformatics study.
Endocr Connect. 2023 Dec 14;13(1). doi: 10.1530/EC-23-0418. Print 2024 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验