Su Hairong, Gu Xiangyu, Zhang Weizheng, Lin Fengye, Lu Xinyi, Zeng Xuan, Wang Chuyang, Chen Weicheng, Liu Wofeng, Tan Ping, Zou Liaonan, Gu Bing, Chen Qubo
Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
J Proteome Res. 2025 May 2;24(5):2542-2552. doi: 10.1021/acs.jproteome.5c00091. Epub 2025 Apr 4.
Identifying novel biomarkers is crucial for early detection of colorectal cancer (CRC). Saliva, as a noninvasive sample, holds promise for CRC detection. Here, we used Olink proteomics and untargeted metabolomics to analyze saliva samples from CRC patients and healthy controls with the aim of identifying candidate biomarkers in CRC saliva. Univariate and multivariate analyses revealed 16 differentially expressed proteins (DEPs) and 40 differentially accumulated metabolites (DAMs). Pathway enrichment showed DEPs were mainly involved in cancer transcriptional dysregulation, Toll-like receptor signaling, and chemokine signaling. Metabolomics analysis highlighted significant changes in amino acid metabolites, particularly in pathways such as arginine biosynthesis, histidine metabolism, and cysteine and methionine metabolism. Random forest analysis and ELISA validation identified four potential biomarkers: succinate, l-methionine, GZMB, and MMP12. A combined protein-metabolite diagnostic model was developed using logistic regression, achieving an area under the curve of 0.933 (95% CI: 0.871-0.996) for the discovery cohort and 0.969 (95% CI: 0.918-1.000) for the validation cohort, effectively distinguishing CRC patients from healthy individuals. In conclusion, our study identified and validated a panel of noninvasive saliva-based biomarkers that could improve CRC screening and provide new insights into clinical CRC diagnosis.
识别新型生物标志物对于结直肠癌(CRC)的早期检测至关重要。唾液作为一种非侵入性样本,在CRC检测方面具有潜力。在此,我们使用Olink蛋白质组学和非靶向代谢组学分析CRC患者和健康对照的唾液样本,旨在识别CRC唾液中的候选生物标志物。单变量和多变量分析揭示了16种差异表达蛋白(DEP)和40种差异积累代谢物(DAM)。通路富集显示DEP主要参与癌症转录失调、Toll样受体信号传导和趋化因子信号传导。代谢组学分析突出了氨基酸代谢物的显著变化,特别是在精氨酸生物合成、组氨酸代谢以及半胱氨酸和蛋氨酸代谢等通路中。随机森林分析和ELISA验证确定了四种潜在生物标志物:琥珀酸、L-蛋氨酸、颗粒酶B(GZMB)和基质金属蛋白酶12(MMP12)。使用逻辑回归建立了蛋白质-代谢物联合诊断模型,发现队列的曲线下面积为0.933(95%CI:0.871-0.996),验证队列的曲线下面积为0.969(95%CI:0.918-1.000),能够有效地区分CRC患者和健康个体。总之,我们的研究识别并验证了一组基于唾液的非侵入性生物标志物,可改善CRC筛查,并为临床CRC诊断提供新的见解。