Suppr超能文献

包括脱钙骨髓在内的多种癌症类型和组织的空间蛋白质组学与转录组学特征分析

Spatial proteomics and transcriptomics characterization of tissue and multiple cancer types including decalcified marrow.

作者信息

Yeung Cecilia Cs, Jones Daniel C, Woolston David W, Seaton Brandon, Donato Elizabeth Lawless, Lin Minggang, Backman Coral, Oehler Vivian, Robinson Kristin L, Shimp Kristen, Kulikauskas Rima, Long Annalyssa N, Sowerby David, Elz Anna E, Smythe Kimberly S, Newell Evan W

机构信息

Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.

Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.

出版信息

Cancer Biomark. 2025 Jan;42(1):18758592241308757. doi: 10.1177/18758592241308757. Epub 2025 Mar 20.

Abstract

BackgroundRecent technologies enabling the study of spatial biology include multiple high-dimensional spatial imaging methods that have rapidly emerged with different capabilities evaluating tissues at different resolutions for different sample formats. Platforms like Xenium (10x Genomics) and PhenoCycler-Fusion (Akoya Biosciences) enable single-cell resolution analysis of gene and protein expression in archival FFPE tissue slides. However, a key limitation is the absence of systematic methods to ensure tissue quality, marker integrity, and data reproducibility.ObjectiveWe seek to optimize the technical methods for spatial work by addressing preanalytical challenges with various tissue and tumor types, including a decalcification protocol for processing FFPE bone marrow core specimens to preserve nucleic acids for effective spatial proteomics and transcriptomics. This study characterizes a multicancer tissue microarray (TMA) and a molecular- and protein-friendly decalcification protocol that supports downstream spatial biology investigations.MethodsWe developed a multi-cancer tissue microarray (TMA) and processed bone marrow core samples using a molecular- and protein-friendly decalcification protocol. PhenoCycler high-plex immunohistochemistry (IHC) generated spatial proteomics data, analyzed with QuPath and single-cell analysis. Xenium provided spatial transcriptomics data, analyzed via Xenium Explorer and custom pipelines.ResultsResults showed that PhenoCycler and Xenium platforms applied to TMA sections of tonsil and various tumor types achieved good marker concordance. Bone marrow decalcification with our optimized protocol preserved mRNA and protein markers, allowing Xenium analysis to resolve all major cell types while maintaining tissue morphology.ConclusionsWe have shared our preanalytical verification of tissues and demonstrate that both the PhenoCycler-Fusion high-plex spatial proteomics and Xenium spatial transcriptomics platforms work well on various tumor types, including marrow core biopsies decalcified using a molecular- and protein-friendly decalcificationprotocol. We also demonstrate our laboratory's methods for systematic quality assessment of the spatial proteomic and transcriptomic data from these platforms, such that either platform can provide orthogonal confirmation for the other.

摘要

背景

近期出现的多种能够用于空间生物学研究的技术,包括多种高维空间成像方法,这些方法具有不同的能力,可针对不同的样本形式以不同分辨率评估组织。像Xenium(10x基因组学公司)和PhenoCycler-Fusion(Akoya生物科学公司)这样的平台能够对存档的福尔马林固定石蜡包埋(FFPE)组织切片中的基因和蛋白质表达进行单细胞分辨率分析。然而,一个关键限制是缺乏确保组织质量、标志物完整性和数据可重复性的系统方法。

目的

我们试图通过应对各种组织和肿瘤类型的分析前挑战来优化空间研究的技术方法,包括用于处理FFPE骨髓芯标本的脱钙方案,以保存核酸用于有效的空间蛋白质组学和转录组学研究。本研究描述了一种多癌组织微阵列(TMA)以及一种支持下游空间生物学研究的分子和蛋白质友好型脱钙方案。

方法

我们开发了一种多癌组织微阵列(TMA),并使用分子和蛋白质友好型脱钙方案处理骨髓芯样本。PhenoCycler高通量免疫组织化学(IHC)生成空间蛋白质组学数据,通过QuPath和单细胞分析进行分析。Xenium提供空间转录组学数据,通过Xenium Explorer和定制管道进行分析。

结果

结果表明,应用于扁桃体和各种肿瘤类型的TMA切片的PhenoCycler和Xenium平台实现了良好的标志物一致性。采用我们优化的方案对骨髓进行脱钙可保留mRNA和蛋白质标志物,使Xenium分析能够分辨所有主要细胞类型,同时保持组织形态。

结论

我们分享了对组织的分析前验证,并证明PhenoCycler-Fusion高通量空间蛋白质组学和Xenium空间转录组学平台在各种肿瘤类型上均表现良好,包括使用分子和蛋白质友好型脱钙方案脱钙的骨髓芯活检样本。我们还展示了我们实验室对来自这些平台的空间蛋白质组学和转录组学数据进行系统质量评估的方法,这样任何一个平台都可以为另一个平台提供正交确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验