Suppr超能文献

多组学的四特征相模型揭示了酵母代谢周期的新见解。

A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle.

作者信息

Wang Linting, Li Xiaojie, Shi Jianhui, Li Lei M

机构信息

State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China.

出版信息

NAR Genom Bioinform. 2025 Mar 19;7(1):lqaf022. doi: 10.1093/nargab/lqaf022. eCollection 2025 Mar.

Abstract

The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.

摘要

酵母代谢周期(YMC)以转录本和代谢物的周期性振荡为特征,是研究生物节律的理想模型。尽管有多个关于YMC的组学数据集,但该过程的统一全景图尚缺。为填补这一空白,我们通过奇异值分解(SVD)整合了多组学数据集,将每个数据集分层为两个水平,并定义了四个特征阶段:初级1A/1B和次级2A/2B。特征阶段按1B、2A、1A和2B的顺序循环出现,显示出诱导和抑制的相互作用:一个特征阶段在不同水平诱导下一个阶段,同时在相同水平抑制另一个阶段。每个特征阶段都有独特的分子特征。新发现的特征包括在特征阶段2A/2B中甘油的产生和消耗,以及2A/2B之间核糖体生物合成和有氧呼吸的相反调节。此外,我们估计了多组学的时间:组蛋白修饰H3K9ac/H3K18ac在mRNA转录前约3分钟出现,随后在约13分钟出现代谢组变化。向下一个特征阶段的转变大约在38分钟后发生。从表观基因组H3K9ac/H3K18ac到代谢组,特征熵增加。这项工作提供了一个适用于多组学数据整合的计算框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01d/11920873/1775b60a7fdc/lqaf022fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验