Suppr超能文献

通过代谢网络模型对酵母代谢周期进行全基因组分析,揭示了整合 ATAC-seq 数据优于 RNA-seq 数据。

Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data.

机构信息

Computational Systems Biology Group, Department of Bioengineering, Gebze Technical Universitygrid.448834.7, Gebze, Kocaeli, Turkey.

出版信息

mSystems. 2022 Jun 28;7(3):e0134721. doi: 10.1128/msystems.01347-21. Epub 2022 Jun 13.

Abstract

Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic alterations in order to facilitate the coordination of dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle enables adaptation of the cells to varying nutritional status through oscillations in gene expression and metabolite production levels. In this process, yeast metabolism is altered between diverse cellular states based on changing oxygen consumption levels: quiescent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive building [RB]) phases. We characterized metabolic alterations during the yeast metabolic cycle using a variety of approaches. Gene expression levels are widely used for condition-specific metabolic simulations, whereas the use of epigenetic information in metabolic modeling is still limited despite the clear relationship between epigenetics and metabolism. This prompted us to investigate the contribution of epigenomic information to metabolic predictions for progression of the yeast metabolic cycle. In this regard, we determined altered pathways through the prediction of regulated reactions and corresponding model genes relying on differential chromatin accessibility levels. The predicted metabolic alterations were confirmed via data analysis and literature. We subsequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast model. The use of ATAC-seq data considerably enhanced the predictive capability of the model. To the best of our knowledge, this is the first attempt to use genome-wide chromatin accessibility data in metabolic modeling. The preliminary results showed that epigenomic data sets can pave the way for more accurate metabolic simulations. Dynamic chromatin organization mediates the emergence of condition-specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its metabolic profile via regulation of genome accessibility and robust transcriptional oscillations under nutrient-limited conditions. Thus, both epigenetic information and transcriptomic information are crucial in the understanding of condition-specific metabolic behavior in this organism. Based on genome-wide alterations in chromatin accessibility and transcription, we investigated the yeast metabolic cycle, which is a remarkable example of coordinated and dynamic yeast behavior. In this regard, we assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic modeling. To our knowledge, this is the first attempt to use chromatin accessibility data in the reconstruction of context-specific metabolic models, despite the extensive use of transcriptomic data. As a result of comparative analyses, we propose that the incorporation of epigenetic information is a promising approach in the accurate prediction of metabolic dynamics.

摘要

酿酒酵母在营养受限条件下通过强大的振荡来调节其生理机能,以适应和生存。环境线索可以诱导节律性代谢改变,以促进动态代谢行为的协调。在这些代谢过程中,酵母代谢周期通过基因表达和代谢物产生水平的振荡使细胞适应不同的营养状态。在此过程中,根据耗氧量的变化,酵母代谢在不同的细胞状态之间发生变化:静止(还原充电 [RC])、生长(氧化 [OX])和增殖(还原构建 [RB])阶段。我们使用多种方法来描述酵母代谢周期中的代谢变化。基因表达水平广泛用于特定条件下的代谢模拟,尽管表观遗传学和代谢之间存在明显的关系,但在代谢建模中使用表观遗传信息仍然有限。这促使我们研究表观基因组信息对酵母代谢周期进展的代谢预测的贡献。在这方面,我们通过预测受调控反应和相应模型基因来确定改变的途径,这些基因依赖于差异染色质可及性水平。通过数据分析和文献验证了预测的代谢变化。随后,我们在酵母模型的背景下利用 RNA 测序(RNA-seq)和转座酶可及染色质的测定(ATAC-seq)数据集。ATAC-seq 数据的使用大大提高了模型的预测能力。据我们所知,这是首次尝试在代谢建模中使用全基因组染色质可及性数据。初步结果表明,表观基因组数据集可以为更准确的代谢模拟铺平道路。动态染色质组织介导真核生物中特定条件表型的出现。酿酒酵母可以通过调节基因组可及性和在营养受限条件下强大的转录振荡来改变其代谢特征。因此,在理解该生物体特定条件下的代谢行为时,表观遗传信息和转录组信息都是至关重要的。基于染色质可及性和转录的全基因组改变,我们研究了酵母代谢周期,这是协调和动态酵母行为的一个显著例子。在这方面,我们评估了 ATAC-seq 和 RNA-seq 数据集在特定条件下代谢建模中的应用。据我们所知,尽管转录组数据的使用非常广泛,但这是首次尝试在特定代谢模型的重建中使用染色质可及性数据。通过比较分析,我们提出将表观遗传信息纳入是准确预测代谢动力学的一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d63e/9239220/c914b4379ac6/msystems.01347-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验