Furukawa Yoshiaki
Juntendo Med J. 2025 Jan 30;71(1):2-10. doi: 10.14789/ejmj.JMJ24-0023-R. eCollection 2025.
Dopa-responsive dystonia (DRD) is a clinical syndrome characterized by childhood-onset dystonia and a dramatic and sustained response to low doses of levodopa. Typically, DRD presents with gait disturbance due to foot dystonia, later development of parkinsonism, and diurnal fluctuation of symptoms. Since the discovery of mutations responsible for DRD in , coding for GTP cyclohydrolase 1 (GTPCH) that catalyzes the rate-limiting step in tetrahydrobiopterin (BH: the cofactor for tyrosine hydroxylase [TH]) biosynthesis, and in , coding for TH in catecholamine biosynthesis, our understanding of this syndrome has greatly increased. However, the underlying mechanisms of phenotypic heterogeneity are still unknown and physicians should learn from genetic, pathological, and biochemical findings of DRD. Neuropathological studies have shown a normal population of cells with decreased melanin and no Lewy bodies in the substantia nigra of classic GTPCH-deficient and TH-deficient DRD. Neurochemical investigations in GTPCH-deficient DRD have indicated that dopamine reduction in the striatum is caused not only by decreased TH activity resulting from low cofactor content but also by actual loss of TH protein without nerve terminal loss. This striatal TH protein loss may be due to a diminished regulatory effect of BH on stability of TH molecules. Neurochemical findings in an asymptomatic mutation carrier versus symptomatic cases suggest that there may be additional genetic and/or environmental factors modulating the regulatory BH effect on TH stability and that the extent of striatal protein loss in TH (rather than that in GTPCH) may be critical in determining the symptomatic state of GTPCH-deficient DRD.
多巴反应性肌张力障碍(DRD)是一种临床综合征,其特征为儿童期起病的肌张力障碍以及对低剂量左旋多巴有显著且持续的反应。通常,DRD表现为因足部肌张力障碍导致的步态障碍、帕金森综合征的后期发展以及症状的昼夜波动。自从发现了导致DRD的突变,其中一个突变发生在编码鸟苷三磷酸环化水解酶1(GTPCH,催化四氢生物蝶呤[BH4:酪氨酸羟化酶(TH)的辅因子]生物合成限速步骤)的基因中,另一个突变发生在编码儿茶酚胺生物合成中TH的基因中,我们对该综合征的认识有了极大提高。然而,表型异质性的潜在机制仍然未知,医生应从DRD的遗传学、病理学和生化研究结果中学习。神经病理学研究表明,在经典的GTPCH缺乏型和TH缺乏型DRD的黑质中,细胞数量正常,黑色素减少且无路易小体。对GTPCH缺乏型DRD的神经化学研究表明,纹状体中多巴胺减少不仅是由于辅因子含量低导致TH活性降低,还由于TH蛋白的实际丢失而无神经末梢丢失。这种纹状体TH蛋白丢失可能是由于BH4对TH分子稳定性的调节作用减弱。对无症状的 突变携带者与有症状病例进行的神经化学研究结果表明,可能存在其他遗传和/或环境因素调节BH4对TH稳定性的调节作用,并且TH(而非GTPCH)纹状体蛋白丢失的程度可能对确定GTPCH缺乏型DRD的症状状态至关重要。