Suppr超能文献

医院死亡率的系统和季节性驱动因素:重新审视早期学习期假说

Systemic and Seasonal Drivers of Hospital Mortality: Revisiting the Early Learning Period Hypothesis.

作者信息

Bakinde Nicolas, Dairo Dokun, Ngo Bakinde Deborah, Crawford Marvin, Snyder Richard, Fotzeu Claudia

机构信息

Medicine, Morehouse School of Medicine, Atlanta, USA.

Medicine, Grady Memorial Hospital, Atlanta, USA.

出版信息

Cureus. 2025 Feb 16;17(2):e79125. doi: 10.7759/cureus.79125. eCollection 2025 Feb.

Abstract

Introduction and background The Early Learning Period (ELP) hypothesis posits that hospital mortality increases during the early academic months, traditionally attributed to transitional challenges such as trainee inexperience and changes in care teams. Understanding the validity of this hypothesis is crucial for guiding healthcare strategies, either toward trainee-focused reforms if validated or systemic interventions if refuted. However, systemic and seasonal factors, such as winter respiratory illness surges and healthcare resource strain, may play a more significant role in hospital mortality trends. Methods This was a retrospective observational study utilizing the 2021 National Inpatient Sample (NIS), a nationally representative database covering approximately 20% of U.S. hospitalizations. The study analyzed 5.6 million adult hospitalizations from 2021, excluding pediatric cases and records with missing mortality data. Hospital mortality trends were compared quarterly (Q1: January-March, Q2: April-June, Q3: July-September, Q4: October-December) to evaluate associations with seasonal and systemic factors. Results Contrary to the ELP hypothesis, hospital mortality was highest in Q1 (4.0%), consistent with seasonal factors like winter illnesses, and lowest in Q2 (2.7%). Mortality in Q3 (3.6%), the period associated with new trainee arrivals, was lower than in Q1. Conclusion This study refutes the ELP hypothesis, demonstrating that systemic and seasonal factors, rather than trainee inexperience, primarily drive hospital mortality trends. Proactive resource allocation targeted at seasonal drivers, particularly during high-demand periods such as Q1, is crucial to improving patient outcomes. These findings emphasize the need for systemic interventions, including enhanced resource allocation and flexible staffing models, rather than trainee-centered reforms. Future research should incorporate monthly mortality trends and teaching hospital-specific data for a more comprehensive understanding.

摘要

引言与背景 早期学习阶段(ELP)假说认为,在学年开始的最初几个月里,医院死亡率会上升,传统上认为这是由于实习医生经验不足和护理团队变动等过渡性挑战所致。了解这一假说的有效性对于指导医疗保健策略至关重要,如果该假说得到验证,可朝着以实习医生为重点的改革方向发展;如果被驳斥,则可采取系统性干预措施。然而,系统性和季节性因素,如冬季呼吸道疾病激增和医疗资源紧张,可能在医院死亡率趋势中发挥更重要的作用。方法 这是一项回顾性观察研究,利用了2021年全国住院患者样本(NIS),这是一个具有全国代表性的数据库,涵盖了约20%的美国住院病例。该研究分析了2021年的560万例成人住院病例,排除了儿科病例和死亡率数据缺失的记录。按季度(第一季度:1月至3月,第二季度:4月至6月,第三季度:7月至9月,第四季度:10月至12月)比较医院死亡率趋势,以评估与季节性和系统性因素的关联。结果 与ELP假说相反,第一季度的医院死亡率最高(4.0%),这与冬季疾病等季节性因素一致,而第二季度最低(2.7%)。与新实习医生入职相关的第三季度死亡率(3.6%)低于第一季度。结论 本研究驳斥了ELP假说,表明主要驱动医院死亡率趋势的是系统性和季节性因素,而非实习医生经验不足。针对季节性驱动因素进行积极的资源分配,特别是在第一季度等高需求时期,对于改善患者预后至关重要。这些发现强调了采取系统性干预措施的必要性,包括加强资源分配和灵活的人员配置模式,而不是以实习医生为中心的改革。未来的研究应纳入月度死亡率趋势和特定教学医院的数据,以进行更全面的了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c64/11920669/ed95c68a5b7b/cureus-0017-00000079125-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验