Suppr超能文献

FastSurfer-LIT:用于全脑MRI分割的病变修复工具,可处理肿瘤、空洞及异常情况。

FastSurfer-LIT: Lesion inpainting tool for whole-brain MRI segmentation with tumors, cavities, and abnormalities.

作者信息

Pollak Clemens, Kügler David, Bauer Tobias, Rüber Theodor, Reuter Martin

机构信息

AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Department of Neuroradiology, Bonn University Hospital, Bonn, Germany.

出版信息

Imaging Neurosci (Camb). 2025 Jan 31;3. doi: 10.1162/imag_a_00446. eCollection 2025 Jan 1.

Abstract

Resection cavities, tumors, and other lesions can fundamentally alter brain structure and present as abnormalities in brain MRI. Specifically, quantifying subtle neuroanatomical changes in other, not directly affected regions of the brain is essential to assess the impact of tumors, surgery, chemo/radiotherapy, or drug treatments. However, only a limited number of solutions address this important task, while many standard analysis pipelines simply do not support abnormal brain images at all. In this paper, we present a method to perform sensitive neuroanatomical analysis of healthy brain regions in the presence of large lesions and cavities. Our approach called "FastSurfer Lesion Inpainting Tool" (FastSurfer-LIT) leverages the recently emerged Denoising Diffusion Probabilistic Models (DDPM) to fill lesion areas with healthy tissue that matches and extends the surrounding tissue. This enables subsequent processing with established MRI analysis methods such as the calculation of adjusted volume and surface measurements using FastSurfer or FreeSurfer. FastSurfer-LIT significantly outperforms previously proposed solutions on a large dataset of simulated brain tumors (N = 100) and synthetic multiple sclerosis lesions (N = 39) with improved Dice and Hausdorff measures, and also on a highly heterogeneous dataset with lesions and cavities in a manual assessment (N = 100). Finally, we demonstrate increased reliability to reproduce pre-operative cortical thickness estimates from corresponding post-operative temporo-mesial resection surgery MRIs. The method is publicly available at https://github.com/Deep-MI/LIT and will be integrated into the FastSurfer toolbox.

摘要

切除腔、肿瘤及其他病变会从根本上改变脑结构,并在脑部磁共振成像(MRI)中呈现为异常。具体而言,量化脑部其他未直接受影响区域的细微神经解剖学变化对于评估肿瘤、手术、化疗/放疗或药物治疗的影响至关重要。然而,仅有少数解决方案可应对这一重要任务,而许多标准分析流程根本不支持异常脑部图像。在本文中,我们提出了一种方法,可在存在大病变和腔的情况下对健康脑区进行敏感的神经解剖学分析。我们的方法名为“快速冲浪者病变修复工具”(FastSurfer-LIT),它利用最近出现的去噪扩散概率模型(DDPM),用与周围组织匹配并延伸的健康组织填充病变区域。这使得后续能够使用既定的MRI分析方法进行处理,例如使用FastSurfer或FreeSurfer计算调整后的体积和表面测量值。在一个包含模拟脑肿瘤(N = 100)和合成多发性硬化病变(N = 39)的大型数据集上,FastSurfer-LIT在改进的骰子系数和豪斯多夫度量方面显著优于先前提出的解决方案,在一个手动评估的包含病变和腔的高度异质数据集(N = 100)上也是如此。最后,我们证明了从相应的术后颞叶内侧切除手术MRI中重现术前皮质厚度估计值的可靠性有所提高。该方法可在https://github.com/Deep-MI/LIT上公开获取,并将被整合到FastSurfer工具包中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4401/12319793/411ab305b9c9/imag_a_00446_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验