Suppr超能文献

高阶认知功能位于何处?使用复杂动态系统框架进行清醒认知映射时的非局部性悖论。

Where are higher-order cognitive functions? The paradox of non-locality in awake cognitive mapping using a complex dynamic system framework.

作者信息

Martín-Fernández Jesús, Caballero-Estebaranz Nayra, Félez Esteban, Navarro-Peris Natalia, Del Rosario Pedro Pérez, Bisshopp Raúl Hernández, Domínguez-Báez Jaime

机构信息

Department of Neurosurgery, Nuestra Señora de Candelaria University Hospital, Tenerife, Spain.

Department of Cognitive-Affective Neuroscience, e-Awake Institute, Tenerife, Spain.

出版信息

Front Psychol. 2025 Mar 3;16:1542505. doi: 10.3389/fpsyg.2025.1542505. eCollection 2025.

Abstract

This study addresses the challenge in identifying and preserving higher-order cognitive functions within a complex dynamic systems framework during neurosurgery. Traditionally, neurosurgical practice has prioritized avoiding language and motor deficits, while higher-order functions-such as social cognition and executive processes-remain underexplored. These functions arise from dynamic large-scale networks operating in an optimal balance between synchronization and metastability rather than from isolated and localized cortical regions. This complexity highlights a paradox of non-locality in awake cognitive mapping: no single area "contains" a function, but certain "critical points" can transiently disrupt network dynamics when stimulated intraoperatively. Direct electrical stimulation provides unique real-time insights by inducing brief dyssynchronizations that elicit observable behavioral changes, allowing neurosurgeons and neuropsychologists to pinpoint crucial cortical and subcortical "connectome-stop points" and minimize damage. Preserving deep white-matter tracts is essential, given their limited neuroplasticity and the profound, often irreversible impact of tract lesions on cognition. To address these challenges, we propose a three-step awake cognitive mapping approach: (1) localizing critical points of networks via DES-driven behavioral impairment, (2) constant monitoring of multiple cognitive domains as tumor resection progresses, and (3) halting resection at connectome-stop points to prevent irreversible deficits. An illustrative case involving a right parietal glioma demonstrates how this methodology integrates computational neuroscience, network theory, and clinical practice to achieve optimal functional preservation and maintain the patient's quality of life.

摘要

本研究探讨了在神经外科手术中,于复杂动态系统框架内识别和保留高阶认知功能所面临的挑战。传统上,神经外科手术侧重于避免语言和运动功能缺损,而诸如社会认知和执行过程等高阶功能仍未得到充分探索。这些功能源自于在同步和亚稳定性之间保持最佳平衡的动态大规模网络,而非孤立的局部皮质区域。这种复杂性凸显了清醒认知图谱中的非局部性悖论:没有单一区域“包含”某种功能,但某些“关键点”在术中受到刺激时会短暂扰乱网络动态。直接电刺激通过引发短暂的去同步化来提供独特的实时见解,这种去同步化会引发可观察到的行为变化,使神经外科医生和神经心理学家能够精确确定关键的皮质和皮质下“连接组停止点”并将损伤降至最低。鉴于深部白质束的神经可塑性有限,且束损伤对认知往往具有深远且通常不可逆的影响,保留深部白质束至关重要。为应对这些挑战,我们提出一种三步清醒认知图谱方法:(1)通过直接电刺激驱动的行为损伤来定位网络关键点;(2)在肿瘤切除过程中持续监测多个认知领域;(3)在连接组停止点处停止切除以防止不可逆转的功能缺损。一个涉及右顶叶胶质瘤的示例病例展示了这种方法如何整合计算神经科学、网络理论和临床实践,以实现最佳功能保留并维持患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab67/11922077/e4c1a3530fc3/fpsyg-16-1542505-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验