Suppr超能文献

用于稳定且抗氢的ALD-IGZO薄膜晶体管的SiO绝缘体中的氮掺杂策略

Nitrogen Doping Strategy in SiO Insulators for Stable and Hydrogen-Resistant ALD-IGZO TFTs.

作者信息

Kim Tae Heon, Kim Dong-Gyu, Kim Sang-Hyun, Kim Tae-Kyung, Song Ki-Cheol, Lee Yeonhee, Park Jin-Seong

机构信息

Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

Department of Display Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2025 Apr 2;17(13):19928-19937. doi: 10.1021/acsami.4c22748. Epub 2025 Mar 20.

Abstract

In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) fabricated via atomic layer deposition (ALD) show promise for future display applications. However, they face challenges related to bias stability and hydrogen vulnerability. We propose an N doping strategy for SiO gate insulators (GI) using nitrous oxide (NO) plasma reactants to control the active layer/GI interface and GI bulk properties of top-gate bottom-contact (TG-BC) IGZO TFTs. Increasing the N content in the SiO from 0.7 to 2.2 at.% by adjusting NO plasma power from 100 to 300 W resulted in a 10-fold increase in trap densities within the interface and IGZO bulk region. Positive bias temperature stress (PBTS) stability exhibited a U-shaped threshold voltage (V) shift from -4.1 to 4.9 V, driven by H concentration in the GI and interface trap densities. After H annealing, devices demonstrated improved H resistivity, with the V shift reduced from -2.1 to 0.0 V, attributed to H being chemically trapped by N atoms with lone pairs or unbonded electrons. Furthermore, a hybrid GI structure combining NO plasma powers of 150 and 300 W further enhanced PBTS stability and H resistivity by 60% and 71%, respectively, demonstrating the effectiveness of this approach.

摘要

通过原子层沉积(ALD)制备的铟镓锌氧化物(IGZO)薄膜晶体管(TFT)在未来显示应用中展现出潜力。然而,它们面临与偏置稳定性和氢脆弱性相关的挑战。我们提出一种使用一氧化二氮(NO)等离子体反应物对SiO栅极绝缘体(GI)进行氮掺杂的策略,以控制顶栅底接触(TG-BC)IGZO TFT的有源层/GI界面以及GI的体特性。通过将NO等离子体功率从100 W调整到300 W,使SiO中的氮含量从0.7原子百分比增加到2.2原子百分比,导致界面和IGZO体区域内的陷阱密度增加了10倍。正偏压温度应力(PBTS)稳定性呈现出U形阈值电压(V)偏移,从-4.1 V到4.9 V,这是由GI中的氢浓度和界面陷阱密度驱动的。经过氢退火后,器件的抗氢性得到改善,V偏移从-2.1 V降低到0.0 V,这归因于氢被具有孤对或未键合电子的氮原子化学捕获。此外,结合150 W和300 W的NO等离子体功率的混合GI结构分别将PBTS稳定性和抗氢性进一步提高了60%和71%,证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验