Wang Yuchan, Ran Qian, Chen Ting, Zhang Wenxia, Zhang Kailiang
Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
J Phys Chem Lett. 2025 Mar 27;16(12):3177-3184. doi: 10.1021/acs.jpclett.5c00326. Epub 2025 Mar 20.
Herein, novel lead-free CsBiI nanocrystals (NCs) were preferred through first-principles calculations and crystal orbital Hamilton population (COHP). An artificial nociceptor was designed using the lead-free halide perovskite (HP) CsBiI NCs doped into poly(methyl methacrylate) (PMMA). The resulting composite material memristor demonstrated remarkable resistive switching performance through conductive atomic force microscopy (C-AFM). PMMA&CsBiI-based memristors show an ultrafast switching speed of 30 ns and low threshold voltage of ≈0.6 V with little variation, which were attributed to the synergistic effect of the active metal electrodes and halide vacancy conductive filaments. Impressively, the memristors show high mechanical bending stability (bending times = 1000) and still exhibit excellent resistance state (RS) properties and multilevel storage after 30 days exposed to ambient conditions. More importantly, the fundamental nociceptive functions were fully demonstrated. Furthermore, a mechano-nociceptor system was designed to simulate the mechanism of biological pain perception, which could selectively react to mild and harmful stimuli. Our study provides new strategies for developing efficient neuromorphic materials and devices.
在此,通过第一性原理计算和晶体轨道哈密顿布居(COHP)筛选出了新型无铅 CsBiI 纳米晶体(NCs)。利用掺杂在聚甲基丙烯酸甲酯(PMMA)中的无铅卤化物钙钛矿(HP)CsBiI NCs 设计了一种人工伤害感受器。通过导电原子力显微镜(C-AFM)测试,所得的复合材料忆阻器表现出显著的电阻开关性能。基于 PMMA&CsBiI 的忆阻器显示出 30 ns 的超快开关速度和约 0.6 V 的低阈值电压,且变化很小,这归因于活性金属电极和卤化物空位导电细丝的协同效应。令人印象深刻的是,忆阻器具有高机械弯曲稳定性(弯曲次数 = 1000),在暴露于环境条件 30 天后仍表现出优异的电阻状态(RS)特性和多级存储能力。更重要的是,充分展示了基本的伤害感受功能。此外,设计了一种机械伤害感受器系统来模拟生物疼痛感知机制,该系统能够对轻度和有害刺激做出选择性反应。我们的研究为开发高效的神经形态材料和器件提供了新策略。