Suppr超能文献

基于石英增强光声光谱的快速十亿分比级甲烷检测。

Rapid ppb-Level Methane Detection Based on Quartz-Enhanced Photoacoustic Spectroscopy.

作者信息

Chen Yanjun, Ma Hanxu, Qiao Shunda, He Ying, Fang Chao, Li Qi, Zhou Sheng, Ma Yufei

机构信息

National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000, China.

Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.

出版信息

Anal Chem. 2025 Apr 1;97(12):6780-6787. doi: 10.1021/acs.analchem.5c00154. Epub 2025 Mar 20.

Abstract

In the paper, quartz-enhanced photoacoustic spectroscopy (QEPAS) and heterodyne quartz-enhanced photoacoustic spectroscopy (H-QEPAS)-based ppb-level methane (CH) detection using a self-designed low-frequency round-head quartz tuning fork (QTF) and power-amplified diode laser is reported for the first time. Compared to the standard 32.768 kHz QTF, the novel round-head QTF, with a resonance frequency () of 9.7 kHz, is utilized as the acoustic wave transducer, benefiting from a longer energy accumulation time and reduced optical noise. A Raman fiber amplifier (RFA) is adopted to amplify the optical power of the continuous wavelength distributed feedback (CW-DFB) diode laser to 300 mW. Acoustic microresonators (AmRs) at specific sizes are on both sides of the QTF for enhancement of acoustic waves. It is observed that, after the installation of AmRs, the signal level is enhanced by a factor of 107.029 compared to the bare QTF. Both CH-QEPAS and CH-H-QEPAS sensors show excellent linearity in response to optical power and CH concentration, with R-squared values exceeding 0.99 for each. The minimum detection limit (MDL) is determined to be 1.321 and 2.126 ppb for CH-QEPAS and CH-H-QEPAS, respectively, when the integration time of the sensor systems is extended to 1000 s. Compared to the 50 s measurement period of the CH-QEPAS sensor, CH-H-QEPAS can identify the of QTF and finish the measurement in 3 s, demonstrating its rapid measurement capability. Furthermore, H-QEPAS technology allows for the acquisition of the without interrupting the measurement, enabling real-time calibration of the . Finally, the sensor is utilized for continuous monitoring of CH concentrations in air and human-exhaled gases, demonstrating its practical measurement capabilities.

摘要

本文首次报道了基于石英增强光声光谱(QEPAS)和外差石英增强光声光谱(H-QEPAS),利用自行设计的低频圆头石英音叉(QTF)和功率放大二极管激光器进行ppb级甲烷(CH)检测。与标准的32.768 kHz QTF相比,新型圆头QTF的共振频率()为9.7 kHz,用作声波换能器,受益于更长的能量积累时间和降低的光学噪声。采用拉曼光纤放大器(RFA)将连续波长分布反馈(CW-DFB)二极管激光器的光功率放大到300 mW。特定尺寸的声学微谐振器(AmR)位于QTF两侧以增强声波。观察到,安装AmR后,信号电平比裸QTF提高了107.029倍。CH-QEPAS和CH-H-QEPAS传感器在响应光功率和CH浓度时均表现出出色的线性,每个的R平方值均超过0.99。当传感器系统的积分时间延长到1000 s时,CH-QEPAS和CH-H-QEPAS的最低检测限(MDL)分别确定为1.321和2.126 ppb。与CH-QEPAS传感器50 s的测量周期相比,CH-H-QEPAS可以识别QTF的,并在3 s内完成测量,展示了其快速测量能力。此外,H-QEPAS技术允许在不中断测量的情况下采集,从而实现的实时校准。最后,该传感器用于连续监测空气和人体呼出气体中的CH浓度,展示了其实际测量能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验