Suppr超能文献

悬浮硝酸锂基电解质:用于互利界面优化策略的静电相互作用

Suspended Lithium Nitrate-Based Electrolytes: Electrostatic Interactions for Mutually Rewarding Interface Optimization Strategies.

作者信息

Zhang Wenjing, Zhang Zhenguo, Zhang Hongtao, Luo Yang, Liu Xinjian, Rao Zhonghao

机构信息

Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

Hebei Key Laboratory of Thermal Science and Energy Clean Utilization, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

出版信息

Adv Sci (Weinh). 2025 May;12(18):e2416656. doi: 10.1002/advs.202416656. Epub 2025 Mar 20.

Abstract

Designing a stable electrode-electrolyte interface (EEI) is critical for developing lithium metal batteries with high energy density, enhanced safety, and broad applicability. Lithium nitrate (LiNO) is an attractive sacrificial additive for lithium metal anode, while its poor solubility in high-voltage-resistant ester/nitrile electrolytes severely limits its utility. To solve it, a novel suspension electrolyte strategy is proposed that uniformly disperses LiNO particles in an ester/nitrile mixed electrolyte to stabilize the electrode interface. The suspended LiNO particles exhibit dual functionality: LiNO enhances the compatibility between the electrode and the electrolyte by affecting the Li solvation environment and preferentially adsorb on the electrode surface; moreover, the in situ formed LiNO-rich EEI by LiNO decomposition with accelerated Li⁺ transport kinetics, effectively suppresses parasitic reactions and improves rate performance. The optimized electrolyte makes Li||NCM523 battery run stably for 100 cycles with a high capacity retention of 90.05% at 60 °C and stably operated at low temperature (-10 °C). Moreover, the electrolyte shows excellent electrochemical stability at a high-voltage of 4.5 V. This work presents a dual-strategy advancement featuring wide-temperature electrolyte formulation and precision interface engineering, synergistically achieving high-specific-energy lithium metal batteries.

摘要

设计稳定的电极-电解质界面(EEI)对于开发具有高能量密度、增强安全性和广泛适用性的锂金属电池至关重要。硝酸锂(LiNO₃)是一种用于锂金属负极的有吸引力的牺牲添加剂,但其在耐高压酯/腈电解质中的溶解度较差,严重限制了其应用。为了解决这一问题,提出了一种新型悬浮电解质策略,即将LiNO₃颗粒均匀分散在酯/腈混合电解质中以稳定电极界面。悬浮的LiNO₃颗粒具有双重功能:LiNO₃通过影响Li⁺溶剂化环境增强电极与电解质之间的兼容性,并优先吸附在电极表面;此外,LiNO₃分解原位形成富含LiNO₃的EEI,加速Li⁺传输动力学,有效抑制寄生反应并提高倍率性能。优化后的电解质使Li||NCM523电池在60℃下稳定运行100次循环,容量保持率高达90.05%,并在低温(-10℃)下稳定运行。此外,该电解质在4.5V的高电压下表现出优异的电化学稳定性。这项工作提出了一种双策略进展,具有宽温度电解质配方和精确界面工程,协同实现高比能锂金属电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验