Suppr超能文献

泰国临床微生物学实验室自动化系统和实验室信息管理系统的使用情况评估。

Assessment of utilization of automated systems and laboratory information management systems in clinical microbiology laboratories in Thailand.

作者信息

Klaytong Preeyarach, Chamawan Panida, Srisuphan Voranadda, Tuamsuwan Krittiya, Boonyarit Phairam, Sangchankoom Adisak, Rojanawiwat Archawin, Unahalekhaka Aekkawat, Krobanan Kulsumpun, Leethongdee Pimrata, Sripichai Orapan, Wuthiekanun Vanaporn, Turner Paul, Limmathurotsakul Direk

机构信息

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Health Administration Division, The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand.

出版信息

PLoS One. 2025 Mar 20;20(3):e0320074. doi: 10.1371/journal.pone.0320074. eCollection 2025.

Abstract

INTRODUCTION

Clinical microbiology laboratories are essential for diagnosing and monitoring antimicrobial resistance (AMR). Here, we assessed the systems involved in generating, managing and analyzing blood culture data in these laboratories in an upper-middle-income country.

METHODS

From October 2023 to February 2024, we conducted a survey on the utilization of automated systems and laboratory information management systems (LIMS) for blood culture specimens in 2022 across 127 clinical microbiology laboratories (one each from 127 public referral hospitals) in Thailand. We categorized automated systems for blood culture processing into three steps: incubation, bacterial identification, and antimicrobial susceptibility testing (AST).

RESULTS

Of the 81 laboratories that completed the questionnaires, the median hospital bed count was 450 (range, 150-1,387), and the median number of blood culture bottles processed was 17,351 (range, 2,900-80,330). All laboratories (100%) had an automated blood culture incubation system. Three-quarters of the laboratories (75%, n = 61) had at least one automated system for both bacterial identification and AST, about a quarter (22%, n = 18) had no automated systems for either step, and two laboratories (3%) outsourced both steps. The systems varied and were associated with the hospital level. Many laboratories utilized both automated systems and conventional methods for bacterial identification (n = 54) and AST (n = 61). For daily data management, 71 laboratories (88%) used commercial microbiology LIMS, three (4%) WHONET, three (4%) an in-house database software and four (5%) did not use any software. Many laboratories manually entered data of incubation (73%, n = 59), bacterial identification (27%, n = 22) and AST results (25%, n = 20) from their automated systems into their commercial microbiology LIMS. The most common barrier to data analysis was 'lack of time', followed by 'lack of staff with statistical skills' and 'difficulty in using analytical software'.

CONCLUSION

In Thailand, various automated systems for blood culture and LIMS are utilized. However, barriers to data management and analysis are common. These challenges are likely present in other upper-middle-income countries. We propose that guidance and technical support for automated systems, LIMS and data analysis are needed.

摘要

引言

临床微生物实验室对于诊断和监测抗菌药物耐药性(AMR)至关重要。在此,我们评估了一个中高收入国家这些实验室中生成、管理和分析血培养数据所涉及的系统。

方法

2023年10月至2024年2月,我们对泰国127家临床微生物实验室(来自127家公立转诊医院,每家医院一个实验室)2022年血培养标本的自动化系统和实验室信息管理系统(LIMS)的使用情况进行了调查。我们将血培养处理的自动化系统分为三个步骤:培养、细菌鉴定和抗菌药物敏感性测试(AST)。

结果

在完成问卷的81家实验室中,医院病床中位数为450张(范围为150 - 1387张),处理的血培养瓶中位数为17351个(范围为2900 - 80330个)。所有实验室(100%)都有自动化血培养系统。四分之三的实验室(75%,n = 61)至少有一个用于细菌鉴定和AST的自动化系统,约四分之一(22%,n = 18)在这两个步骤中都没有自动化系统,两个实验室(3%)将这两个步骤都外包了。这些系统各不相同,且与医院级别有关。许多实验室在细菌鉴定(n = 54)和AST(n = 61)方面同时使用自动化系统和传统方法。对于日常数据管理,71家实验室(88%)使用商业微生物LIMS,三家(4%)使用WHONET,三家(4%)使用内部数据库软件,四家(5%)未使用任何软件。许多实验室手动将其自动化系统中培养(73%,n = 59)、细菌鉴定(27%,n = 22)和AST结果(25%,n = 20)的数据输入到其商业微生物LIMS中。数据分析最常见的障碍是“时间不足”,其次是“缺乏具备统计技能的人员”和“使用分析软件困难”。

结论

在泰国,使用了各种血培养自动化系统和LIMS。然而,数据管理和分析的障碍很常见。这些挑战可能在其他中高收入国家也存在。我们建议需要针对自动化系统、LIMS和数据分析提供指导和技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e5/11925457/5386d28c41ae/pone.0320074.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验