Suppr超能文献

经验影响小鼠初级视觉丘脑特征选择性的精细化。

Experience influences the refinement of feature selectivity in the mouse primary visual thalamus.

作者信息

Sonoda Takuma, Stephany Céleste-Élise, Kelley Kaleb, Kang Di, Wu Rui, Uzgare Meghna R, Fagiolini Michela, Greenberg Michael E, Chen Chinfei

机构信息

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Neuron. 2025 May 7;113(9):1352-1362.e4. doi: 10.1016/j.neuron.2025.02.023. Epub 2025 Mar 19.

Abstract

Neurons exhibit selectivity for specific features: a property essential for extracting and encoding relevant information in the environment. This feature selectivity is thought to be modifiable by experience at the level of the cortex. Here, we demonstrate that selective exposure to a feature during development can alter the population representation of that feature in the primary visual thalamus. This thalamic plasticity is not due to changes in corticothalamic inputs and is blocked in mutant mice that exhibit deficits in retinogeniculate refinement, suggesting that plasticity is a direct result of changes in feedforward connectivity. Notably, experience-dependent changes in thalamic feature selectivity also occur in adult animals, although these changes are transient, unlike in juvenile animals, where they are long lasting. These results reveal an unexpected degree of plasticity in the visual thalamus and show that salient environmental features can be encoded in thalamic circuits during a discrete developmental window.

摘要

神经元对特定特征具有选择性

这是在环境中提取和编码相关信息所必需的特性。这种特征选择性被认为在皮质水平上可由经验改变。在这里,我们证明在发育过程中对某一特征的选择性暴露能够改变该特征在初级视觉丘脑的群体表征。这种丘脑可塑性并非由于皮质丘脑输入的变化,并且在视网膜膝状体精细化存在缺陷的突变小鼠中受到阻碍,这表明可塑性是前馈连接变化的直接结果。值得注意的是,成年动物的丘脑特征选择性也会出现依赖于经验的变化,尽管这些变化是短暂的,这与幼年动物中持久的变化不同。这些结果揭示了视觉丘脑中意想不到的可塑性程度,并表明在一个离散的发育窗口期间,显著的环境特征能够在丘脑回路中被编码。

相似文献

1
Experience influences the refinement of feature selectivity in the mouse primary visual thalamus.
Neuron. 2025 May 7;113(9):1352-1362.e4. doi: 10.1016/j.neuron.2025.02.023. Epub 2025 Mar 19.
2
Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
J Neurosci. 2020 Jan 15;40(3):585-604. doi: 10.1523/JNEUROSCI.1626-19.2019. Epub 2019 Nov 25.
3
Shaping sight: Novel thalamic plasticity channels dLGN feature preference during visual critical period.
Neuron. 2025 May 7;113(9):1294-1296. doi: 10.1016/j.neuron.2025.04.001.
4
Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System.
Neuron. 2020 Apr 8;106(1):21-36. doi: 10.1016/j.neuron.2020.01.031.
5
Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10485-10490. doi: 10.1073/pnas.1710613114. Epub 2017 Sep 11.
6
Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse.
J Neurophysiol. 2014 Aug 15;112(4):942-50. doi: 10.1152/jn.00175.2014. Epub 2014 May 21.
7
Cortical Feedback Regulates Feedforward Retinogeniculate Refinement.
Neuron. 2016 Sep 7;91(5):1021-1033. doi: 10.1016/j.neuron.2016.07.040. Epub 2016 Aug 18.
8
Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse.
J Neurosci. 2008 Apr 30;28(18):4807-17. doi: 10.1523/JNEUROSCI.4667-07.2008.
9
Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism.
Neuron. 2020 Nov 11;108(3):451-468.e9. doi: 10.1016/j.neuron.2020.08.002. Epub 2020 Sep 14.
10
Experience-dependent plasticity in the lateral geniculate nucleus.
Curr Opin Neurobiol. 2018 Dec;53:22-28. doi: 10.1016/j.conb.2018.04.016. Epub 2018 May 4.

引用本文的文献

1
Reciprocal interaction between cortical SST and PV interneurons in top-down regulation of retinothalamic refinement.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2504224122. doi: 10.1073/pnas.2504224122. Epub 2025 Jun 18.

本文引用的文献

1
Development and organization of the retinal orientation selectivity map.
Nat Commun. 2024 Jun 6;15(1):4829. doi: 10.1038/s41467-024-49206-z.
2
Parallel pathways carrying direction-and orientation-selective retinal signals to layer 4 of the mouse visual cortex.
Cell Rep. 2024 Mar 26;43(3):113830. doi: 10.1016/j.celrep.2024.113830. Epub 2024 Feb 21.
3
Activity-induced MeCP2 phosphorylation regulates retinogeniculate synapse refinement.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310344120. doi: 10.1073/pnas.2310344120. Epub 2023 Oct 23.
4
Thalamic regulation of ocular dominance plasticity in adult visual cortex.
Elife. 2023 Oct 5;12:RP88124. doi: 10.7554/eLife.88124.
5
Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret.
J Neurosci. 2023 May 10;43(19):3495-3508. doi: 10.1523/JNEUROSCI.1461-21.2023. Epub 2023 Apr 7.
6
Cortical feedback modulates distinct critical period development in mouse visual thalamus.
iScience. 2022 Dec 7;26(1):105752. doi: 10.1016/j.isci.2022.105752. eCollection 2023 Jan 20.
7
A flexible Python-based touchscreen chamber for operant conditioning reveals improved visual perception of cardinal orientations in mice.
Front Cell Neurosci. 2022 Oct 10;16:866109. doi: 10.3389/fncel.2022.866109. eCollection 2022.
8
Functional convergence of on-off direction-selective ganglion cells in the visual thalamus.
Curr Biol. 2022 Jul 25;32(14):3110-3120.e6. doi: 10.1016/j.cub.2022.06.023. Epub 2022 Jul 5.
10
Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse.
Neuron. 2021 Aug 4;109(15):2457-2468.e12. doi: 10.1016/j.neuron.2021.05.036. Epub 2021 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验