Wang Jing-Ping, Zhao Xiang-Ming, Liu Xiao-Lei, Jiang Wen-Xin, Gao Chao, Cao Hai-Yan, Ding Hai-Tao, Qin Qi-Long, Chen Xiu-Lan, Zhang Yu-Zhong, Li Ping-Yi
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center & Laoshan Laboratory, Qingdao, China.
J Biol Chem. 2025 Apr;301(4):108420. doi: 10.1016/j.jbc.2025.108420. Epub 2025 Mar 18.
The microbial oxidative cleavage of chitin, the second most abundant biopolymer in nature, generates a substantial amount of oxidized amino sugar, 2-(acetylamino)-2-deoxy-D-gluconic acid (GlcNAc1A). The catabolism of GlcNAc1A is key to the oxidative chitin degradation pathway. However, the molecular mechanism and evolution underlying this pathway remain elusive. Here, we target OngB, which initiates the GlcNAc1A catabolism, to explore the molecular mechanism driving the evolution of this process. We characterized PpOngB (the OngB from Pseudoalteromonas prydzensis ACAM 620) and its homologs as specific deacetylases for GlcNAc1A and solved the structures of WT PpOngB and its inactive mutant in complex with GlcNAc1A. Structural, mutational, and biochemical analyses revealed that PpOngB utilizes a D-aminoacylase-like (β/α)-barrel fold to deacetylate GlcNAc1A in a metal-dependent manner. PpOngB and its homologs significantly differ from other known carbohydrate de-N-acetylases in sequences, substrate specificities, and structures. Phylogenetic analysis indicated that PpOngB and its homologs represent a new carbohydrate de-N-acetylase family, forming a sister group of D-aminoacylases involved in the catabolism of N-acetyl-D-amino acids. Further structural analysis suggested that GlcNAc1A deacetylases likely evolved from an ancestral D-aminoacylase, undergoing structural and electrostatic modifications in the catalytic cavity to hydrolyze GlcNAc1A. This study provides insights into the catalytic mechanism and the divergent evolution of GlcNAc1A deacetylases, advancing our understanding of oxidative chitin degradation.
几丁质是自然界中第二丰富的生物聚合物,其微生物氧化裂解会产生大量氧化氨基糖,即2-(乙酰氨基)-2-脱氧-D-葡糖酸(GlcNAc1A)。GlcNAc1A的分解代谢是氧化几丁质降解途径的关键。然而,该途径的分子机制和进化过程仍不清楚。在这里,我们以启动GlcNAc1A分解代谢的OngB为研究对象,探索驱动这一过程进化的分子机制。我们将PpOngB(来自普里兹湾假交替单胞菌ACAM 620的OngB)及其同源物鉴定为GlcNAc1A的特异性脱乙酰酶,并解析了野生型PpOngB及其与GlcNAc1A结合的无活性突变体的结构。结构、突变和生化分析表明,PpOngB利用类似D-氨基酰化酶的(β/α)-桶状折叠以金属依赖的方式使GlcNAc1A脱乙酰化。PpOngB及其同源物在序列、底物特异性和结构上与其他已知的碳水化合物脱N-乙酰酶有显著差异。系统发育分析表明,PpOngB及其同源物代表一个新的碳水化合物脱N-乙酰酶家族,形成参与N-乙酰-D-氨基酸分解代谢的D-氨基酰化酶的姐妹群。进一步的结构分析表明,GlcNAc1A脱乙酰酶可能起源于一个祖先D-氨基酰化酶,在催化腔内经历结构和静电修饰以水解GlcNAc1A。这项研究为GlcNAc1A脱乙酰酶的催化机制和趋异进化提供了见解,增进了我们对氧化几丁质降解的理解。