Munzone Alessia, Eijsink Vincent G H, Berrin Jean-Guy, Bissaro Bastien
UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway.
Nat Rev Chem. 2024 Feb;8(2):106-119. doi: 10.1038/s41570-023-00565-z. Epub 2024 Jan 10.
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and HO for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
裂解多糖单加氧酶(LPMOs)通过催化难降解多糖的氧化裂解,在全球碳循环、工业生物质加工和微生物致病性中发挥着重要作用。尽管最初被认为是单加氧酶,但实验和理论研究表明,LPMOs本质上是过氧合酶,利用单个铜离子和过氧化氢进行C-H键氧化。在这里,我们研究LPMO催化作用,重点关注那些塑造了我们对其功能理解的关键研究,并探讨那些部分模糊了我们理解的副反应和竞争反应。然后,我们将这种新型铜过氧合酶反应与血红素铁酶催化的反应进行比较,突出其中不同的化学反应。我们通过解决围绕LPMO催化的一些开放性问题来得出结论,包括过氧合酶和单加氧酶反应在生物学背景下的重要性、LPMOs如何调节铜位点反应性以及针对氧化损伤的潜在保护机制。