Suppr超能文献

利用基于Transformer的深度学习架构和可解释人工智能增强皮肤病分类

Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI.

作者信息

Mohan Jayanth, Sivasubramanian Arrun, V Sowmya, Ravi Vinayakumar

机构信息

Amrita School of Artificial Intelligence, Coimbatore, Amrita Vishwa Vidyapeetham, India.

Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.

出版信息

Comput Biol Med. 2025 May;190:110007. doi: 10.1016/j.compbiomed.2025.110007. Epub 2025 Mar 20.

Abstract

Skin diseases affect over a third of the global population, yet their impact is often underestimated. Automating the classification of these diseases is essential for supporting timely and accurate diagnoses. This study leverages Vision Transformers, Swin Transformers, and DinoV2, introducing DinoV2 for the first time in dermatology tasks. On a 31-class skin disease dataset, DinoV2 achieves state-of-the-art results with a test accuracy of 96.48 ± 0.0138% and an F1-Score of 97.27%, marking a nearly 10% improvement over existing benchmarks. The robustness of DinoV2 is further validated on the HAM10000 and Dermnet datasets, where it consistently surpasses prior models. Comparative analysis also includes ConvNeXt and other CNN architectures, underscoring the benefits of transformer models. Additionally, explainable AI techniques like GradCAM and SHAP provide global heatmaps and pixel-level correlation plots, offering detailed insights into disease localization. These complementary approaches enhance model transparency and support clinical correlations, assisting dermatologists in accurate diagnosis and treatment planning. This combination of high performance and clinical relevance highlights the potential of transformers, particularly DinoV2, in dermatological applications.

摘要

皮肤疾病影响着全球超过三分之一的人口,但其影响往往被低估。实现这些疾病分类的自动化对于支持及时、准确的诊断至关重要。本研究利用视觉Transformer、Swin Transformer和DinoV2,首次将DinoV2引入皮肤病学任务中。在一个31类皮肤疾病数据集上,DinoV2取得了领先的成果,测试准确率为96.48±0.0138%,F1分数为97.27%,比现有基准提高了近10%。DinoV2的稳健性在HAM10000和Dermnet数据集上得到进一步验证,在这些数据集上它始终超越先前的模型。对比分析还包括ConvNeXt和其他卷积神经网络架构,突出了Transformer模型的优势。此外,诸如GradCAM和SHAP等可解释人工智能技术提供了全局热图和像素级相关图,为疾病定位提供了详细的见解。这些互补方法提高了模型的透明度并支持临床关联,协助皮肤科医生进行准确的诊断和治疗规划。这种高性能与临床相关性的结合凸显了Transformer,特别是DinoV2在皮肤病学应用中的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验