Suppr超能文献

两层互联网络上易感-感染-易感模型的数值敏感性分析

Numerical sensitivity analysis of the susceptible- infected- susceptible model on two-layer interconnected networks.

作者信息

Zhou Yan, Li Yue, Zhang Yunxing

机构信息

School of Management, Shandong Technology and Business University, Yantai, 264005, China.

School of Economics and Management, Harbin University of Science and Technology, Harbin, 150080, China.

出版信息

Sci Rep. 2025 Mar 21;15(1):9723. doi: 10.1038/s41598-025-92320-1.

Abstract

In the field of complex networks, understanding the spreading dynamics in multi-layer networks is crucial for real-world applications such as epidemic control and the analysis of social phenomenon. In this study, a two-layer interconnected network is established, with each layer modeled as a small-world network. To investigate the spreading dynamics on this two-layer network, the classic susceptible-infected-susceptible (SIS) model is applied to it. The governing equations for the Infection proportions on each layer are developed first, followed by the proof of the existence of steady solutions (the proportion of finally infected nodes in the network) and their analytical derivation. Then, the computational model is developed accurately track the time evolution of these solutions using the 4th-order Runge-Kutta method. Finally, a numerical investigation on the influence of parameters is carried out. Three categories of parameters are considered, including inter-layer parameters, intra-layer parameters, and recovery-related parameters. Their effects on the steady solution and the infection velocity of the SIS model on the two-layer networks are summarized. It is found that both inter-layer and intra-layer parameters significantly impact the infection dynamics, an increase in these parameters leads to an increase in the final Infection proportions and a decrease in the time to reach this state. For recovery-related parameters, there exists a maximum value due to the balance of contributions from different aspects. Besides, when the scales of the two layers are unequal, the influence of intra-layer parameters is more obvious for the layer with a smaller scale. The study may contribute to the understanding of spreading dynamics on multi-layer complex networks. It provides practical guidance for managing and controlling the spread of infections in real-world scenarios. The insights gained are valuable for related research and applications in areas like epidemiology and social network analysis.

摘要

在复杂网络领域,理解多层网络中的传播动态对于诸如疫情防控和社会现象分析等实际应用至关重要。在本研究中,建立了一个两层互联网络,每层都建模为一个小世界网络。为了研究该两层网络上的传播动态,将经典的易感-感染-易感(SIS)模型应用于其上。首先推导了每层感染比例的控制方程,接着证明了稳态解(网络中最终感染节点的比例)的存在性及其解析推导。然后,开发了计算模型,使用四阶龙格-库塔方法精确跟踪这些解的时间演化。最后,对参数的影响进行了数值研究。考虑了三类参数,包括层间参数、层内参数和恢复相关参数。总结了它们对两层网络上SIS模型的稳态解和感染速度的影响。研究发现,层间参数和层内参数均对感染动态有显著影响,这些参数的增加会导致最终感染比例增加,且达到该状态的时间减少。对于恢复相关参数,由于不同方面贡献的平衡,存在一个最大值。此外,当两层的规模不相等时,层内参数对规模较小的层的影响更为明显。该研究可能有助于理解多层复杂网络上的传播动态。它为在现实场景中管理和控制感染传播提供了实际指导。所获得的见解对于流行病学和社会网络分析等领域的相关研究和应用具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa15/11928516/25e86e601ca3/41598_2025_92320_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验