Suppr超能文献

重新审视传染病传播建模的标准。

Revisiting the standard for modeling the spread of infectious diseases.

机构信息

Chemical and Biomolecular Engineering Department, University of Houston, 4226 MLK Blvd, Houston, TX, 77204-4004, USA.

出版信息

Sci Rep. 2022 Apr 30;12(1):7077. doi: 10.1038/s41598-022-10185-0.

Abstract

The COVID-19 epidemic brought to the forefront the value of mathematical modelling for infectious diseases as a guide to help manage a formidable challenge for human health. A standard dynamic model widely used for a spreading epidemic separates a population into compartments-each comprising individuals at a similar stage before, during, or after infection-and keeps track of the population fraction in each compartment over time, by balancing compartment loading, discharge, and accumulation rates. The standard model provides valuable insight into when an epidemic spreads or what fraction of a population will have been infected by the epidemic's end. A subtle issue, however, with that model, is that it may misrepresent the peak of the infectious fraction of a population, the time to reach that peak, or the rate at which an epidemic spreads. This may compromise the model's usability for tasks such as "Flattening the Curve" or other interventions for epidemic management. Here we develop an extension of the standard model's structure, which retains the simplicity and insights of the standard model while avoiding the misrepresentation issues mentioned above. The proposed model relies on replacing a module of the standard model by a module resulting from Padé approximation in the Laplace domain. The Padé-approximation module would also be suitable for incorporation in the wide array of standard model variants used in epidemiology. This warrants a re-examination of the subject and could potentially impact model-based management of epidemics, development of software tools for practicing epidemiologists, and related educational resources.

摘要

COVID-19 疫情凸显了数学模型在传染病学中的价值,它是指导人类健康应对巨大挑战的一种手段。一种广泛应用于传染病传播的标准动力学模型,将人群分为不同的隔间——每个隔间包含在感染前、感染中和感染后处于相似阶段的个体,并通过平衡隔间的加载、排放和积累率,来跟踪每个隔间的人口比例随时间的变化。该标准模型为传染病何时传播或疫情结束时将有多少人口被感染提供了有价值的见解。然而,该模型存在一个微妙的问题,即它可能无法准确反映人群中传染性部分的峰值、达到峰值的时间或传染病传播的速度。这可能会影响模型在“曲线变平”或其他传染病管理干预措施等任务中的可用性。在这里,我们对标准模型的结构进行了扩展,该扩展既保留了标准模型的简单性和洞察力,又避免了上述错误。所提出的模型依赖于用拉普拉斯域中的 Padé 逼近产生的模块替换标准模型的一个模块。Padé 逼近模块也适用于纳入流行病学中广泛使用的标准模型变体。这需要重新审查这个问题,并可能对基于模型的传染病管理、实践流行病学家的软件工具的开发以及相关教育资源产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d28/9056532/b0ddf61f5328/41598_2022_10185_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验