Suppr超能文献

细胞单纯形法:在单纯形上可视化单细胞命运和转变

CytoSimplex: visualizing single-cell fates and transitions on a simplex.

作者信息

Liu Jialin, Wang Yichen, Li Chen, Gu Yichen, Ono Noriaki, Welch Joshua

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States.

Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.

出版信息

Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf119.

Abstract

SUMMARY

Cells differentiate to their final fates along unique trajectories, often involving multi-potent progenitors that can produce multiple terminally differentiated cell types. Recent developments in single-cell transcriptomic and epigenomic measurement provide tremendous opportunities for mapping these trajectories. The visualization of single-cell data often relies on dimension reduction methods such as UMAP to simplify high-dimensional single-cell data down to an understandable 2D form. However, these dimension reduction methods are not constructed to allow direct interpretation of the reduced dimensions in terms of cell differentiation. To address these limitations, we developed a new approach that places each cell from a single-cell dataset within a simplex whose vertices correspond to terminally differentiated cell types. Our approach can quantify and visualize current cell fate commitment and future cell potential. We developed CytoSimplex, a standalone open-source package implemented in R and Python that provides simple and intuitive visualizations of cell differentiation in 2D ternary and 3D quaternary plots. We believe that CytoSimplex can help researchers gain a better understanding of cell type transitions in specific tissues and characterize developmental processes.

AVAILABILITY AND IMPLEMENTATION

The R version of CytoSimplex is available on Github at https://github.com/welch-lab/CytoSimplex. The Python version of CytoSimplex is available on Github at https://github.com/welch-lab/pyCytoSimplex.

摘要

摘要

细胞沿着独特的轨迹分化为其最终命运,这通常涉及多能祖细胞,这些祖细胞可以产生多种终末分化细胞类型。单细胞转录组学和表观基因组学测量的最新进展为绘制这些轨迹提供了巨大机遇。单细胞数据的可视化通常依赖于降维方法,如UMAP,以将高维单细胞数据简化为可理解的二维形式。然而,这些降维方法并非为从细胞分化角度直接解释降维维度而构建。为解决这些局限性,我们开发了一种新方法,将单细胞数据集中的每个细胞置于一个单纯形内,该单纯形的顶点对应于终末分化细胞类型。我们的方法可以量化和可视化当前的细胞命运决定和未来的细胞潜能。我们开发了CytoSimplex,这是一个用R和Python实现的独立开源软件包,它在二维三元图和三维四元图中提供细胞分化的简单直观可视化。我们相信CytoSimplex可以帮助研究人员更好地理解特定组织中的细胞类型转变,并表征发育过程。

可用性和实现方式

CytoSimplex的R版本可在Github上的https://github.com/welch-lab/CytoSimplex获取。CytoSimplex的Python版本可在Github上的https://github.com/welch-lab/pyCytoSimplex获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/195f/11992338/2f22dbab87bd/btaf119f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验