Zhang Haoyun, Zhang Wentao, Zhao Shuai, Xu Guangyu, Shen Yi, Jiang Feng, Qin An, Cui Lei
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
Bioinformatics. 2024 Nov 28;40(12). doi: 10.1093/bioinformatics/btae710.
This study introduces easySCF, a tool designed to enhance the interoperability of single-cell data between the two major bioinformatics platforms, R and Python. By supporting seamless data exchange, easySCF improves the efficiency and accuracy of single-cell data analysis.
easySCF utilizes a unified data format (.h5 format) to facilitate data transfer between R and Python platforms. The tool has been evaluated for data processing speed, memory efficiency, and disk usage, as well as its capability to handle large-scale single-cell datasets. easySCF is available as an open-source package, with implementation details and documentation accessible at https://github.com/xleizi/easySCF.
本研究介绍了easySCF,这是一种旨在增强两个主要生物信息学平台R和Python之间单细胞数据互操作性的工具。通过支持无缝数据交换,easySCF提高了单细胞数据分析的效率和准确性。
easySCF利用统一的数据格式(.h5格式)来促进R和Python平台之间的数据传输。该工具已针对数据处理速度、内存效率、磁盘使用情况以及处理大规模单细胞数据集的能力进行了评估。easySCF作为一个开源包提供,其实现细节和文档可在https://github.com/xleizi/easySCF获取。