Suppr超能文献

秀丽隐杆线虫:在秀丽隐杆线虫显微图像中使用双卷积循环神经网络解码器进行实例分割

SegElegans: Instance segmentation using dual convolutional recurrent neural network decoder in Caenorhabditis elegans microscopic images.

作者信息

Castro Pablo E Layana, Kounakis Konstantinos, Garví Antonio García, Gkikas Ilias, Tsiamantas Ioannis, Tavernarakis Nektarios, Sánchez-Salmerón Antonio-José

机构信息

Universitat Politècnica de Valéncia, Instituto de Automática e Informática Industrial, Camino de Vera S/n, Edificio 8G Acceso D, Valencia, 46022, Valencia, Spain.

Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71110, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71110, Crete, Greece.

出版信息

Comput Biol Med. 2025 May;190:110012. doi: 10.1016/j.compbiomed.2025.110012. Epub 2025 Mar 21.

Abstract

Caenorhabditis elegans is a great model for exploring organismal, cellular, and subcellular biology through optical and fluorescence microscopy, with its research applications steadily expanding. However, manual processing of numerous microscopic images is prone to errors and demands significant labor due to worms tendency to touch or cluster with each other. Here, we present a new system for segmenting whole-body instances of Caenorhabditis elegans in microscopic images (referred to as SegElegans), employing a combination of neural network architecture and conventional image processing techniques. Our method effectively overcomes previous challenges and resolves many instances of contact and overlap between worms in highly populated images in a timely manner. The results obtained show an average Intersection over Union value of 96.3% per worm and an average improvement of 6% over other existing methods for automated analysis of worm images. SegElegns is a user-friendly application for Caenorhabditis elegans segmentation that will benefit whole-worm phenotypic screenings essential for studying development, behavior, aging, and disease.

摘要

秀丽隐杆线虫是通过光学显微镜和荧光显微镜探索生物、细胞和亚细胞生物学的优秀模型,其研究应用正在稳步扩展。然而,由于线虫倾向于相互接触或聚集,手动处理大量微观图像容易出错且需要大量人力。在这里,我们提出了一种新的系统(称为SegElegans),用于在微观图像中分割秀丽隐杆线虫的全身实例,该系统采用了神经网络架构和传统图像处理技术的组合。我们的方法有效地克服了先前的挑战,并及时解决了高密度图像中线虫之间的许多接触和重叠情况。获得的结果显示,每条线虫的平均交并比为96.3%,与其他用于线虫图像自动分析的现有方法相比,平均提高了6%。SegElegns是一个用户友好的秀丽隐杆线虫分割应用程序,将有利于对研究发育、行为、衰老和疾病至关重要的全虫表型筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf7d/12048300/c123e2bbf136/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验