Suppr超能文献

使用探索性因素分析和非负矩阵分解探索韩国的多重疾病模式。

Exploring patterns of multimorbidity in South Korea using exploratory factor analysis and non negative matrix factorization.

作者信息

Kim Yeonjae, Park Samina, Choi Yun Mi, Yoon Byung-Ho, Kim Su Hyun, Park Jin, Oh Hyun Jin, Lim Yaeji, Lee Jungkyun, Park Bomi

机构信息

Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea.

Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Sci Rep. 2025 Mar 22;15(1):9885. doi: 10.1038/s41598-025-94338-x.

Abstract

The increasing prevalence of multimorbidity and the co-occurrence of multiple chronic diseases presents a measurable challenge to public health, impacting healthcare strategies and planning. This study aimed to explore disease patterns and temporal clustering using data from South Korea's National Health Insurance Service, spanning 2002-2019. The dataset included approximately 1 million individuals, focusing on those with at least two chronic diseases while excluding individuals who died within five years of follow-up. We analyzed 126 non-communicable diseases, considering only those with a prevalence above 1%, and applied a wash-out period to determine incidence. Exploratory factor analysis (EFA) and non-negative matrix factorization (NMF) were used to identify disease clustering over time. Participants were divided into four groups: men and women in their 50 s and 60 s. EFA identified five patterns in men in their 50 s and seven in their 60 s, while four patterns emerged in women in their 50 s and five in their 60 s. NMF identified 10 clusters for men in their 50 s, 15 in their 60 s, and 16 clusters for women in both age groups. Our study confirms established comorbidity patterns and reveals previously unrecognized clusters, providing data-driven insights into multimorbidity mechanisms and supporting evidence-based healthcare strategies.

摘要

多种疾病并存以及多种慢性病同时出现的情况日益普遍,这对公共卫生构成了重大挑战,影响着医疗保健策略和规划。本研究旨在利用韩国国民健康保险服务中心2002年至2019年的数据,探索疾病模式和时间聚集性。数据集包括约100万人,重点关注患有至少两种慢性病的人群,同时排除在随访五年内死亡的个体。我们分析了126种非传染性疾病,仅考虑患病率高于1%的疾病,并应用洗脱期来确定发病率。探索性因素分析(EFA)和非负矩阵分解(NMF)被用于识别随时间变化的疾病聚集情况。参与者被分为四组:50多岁和60多岁的男性和女性。EFA在50多岁的男性中识别出五种模式,在60多岁的男性中识别出七种模式,而在50多岁的女性中出现了四种模式,在60多岁的女性中出现了五种模式。NMF在50多岁的男性中识别出10个聚类,在60多岁的男性中识别出15个聚类,在两个年龄组的女性中均识别出16个聚类。我们的研究证实了既定的共病模式,并揭示了以前未被认识到的聚类,为多种疾病并存的机制提供了数据驱动的见解,并支持基于证据的医疗保健策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f586/11929802/30681e7e095c/41598_2025_94338_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验