Suppr超能文献

COVID-19 患者的多病共存模式及其与感染严重程度的关系:MRisk-COVID 研究。

Multimorbidity patterns in COVID-19 patients and their relationship with infection severity: MRisk-COVID study.

机构信息

Institutional Committee for the Improvement of Clinical Practice Adequacy, Clinical Epidemiology and Cancer Screening Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain.

Department of Paediatrics, Obstetrics and Gynaecology, Preventive Medicine and Public Health, Autonomous University of Barcelona (UAB), Bellaterra, Spain.

出版信息

PLoS One. 2023 Aug 31;18(8):e0290969. doi: 10.1371/journal.pone.0290969. eCollection 2023.

Abstract

BACKGROUND

Several chronic conditions have been identified as risk factors for severe COVID-19 infection, yet the implications of multimorbidity need to be explored. The objective of this study was to establish multimorbidity clusters from a cohort of COVID-19 patients and assess their relationship with infection severity/mortality.

METHODS

The MRisk-COVID Big Data study included 14 286 COVID-19 patients of the first wave in a Spanish region. The cohort was stratified by age and sex. Multimorbid individuals were subjected to a fuzzy c-means cluster analysis in order to identify multimorbidity clusters within each stratum. Bivariate analyses were performed to assess the relationship between severity/mortality and age, sex, and multimorbidity clusters.

RESULTS

Severe infection was reported in 9.5% (95% CI: 9.0-9.9) of the patients, and death occurred in 3.9% (95% CI: 3.6-4.2). We identified multimorbidity clusters related to severity/mortality in most age groups from 21 to 65 years. In males, the cluster with highest percentage of severity/mortality was Heart-liver-gastrointestinal (81-90 years, 34.1% severity, 29.5% mortality). In females, the clusters with the highest percentage of severity/mortality were Diabetes-cardiovascular (81-95 years, 22.5% severity) and Psychogeriatric (81-95 years, 16.0% mortality).

CONCLUSION

This study characterized several multimorbidity clusters in COVID-19 patients based on sex and age, some of which were found to be associated with higher rates of infection severity/mortality, particularly in younger individuals. Further research is encouraged to ascertain the role of specific multimorbidity patterns on infection prognosis and identify the most vulnerable morbidity profiles in the community.

TRIAL REGISTRATION

NCT04981249. Registered 4 August 2021 (retrospectively registered).

摘要

背景

已经确定了几种慢性疾病是 COVID-19 严重感染的危险因素,但需要探讨多种合并症的影响。本研究的目的是从 COVID-19 患者队列中建立多种合并症聚类,并评估它们与感染严重程度/死亡率的关系。

方法

MRisk-COVID 大数据研究纳入了西班牙某地区 COVID-19 患者第一波中的 14286 例患者。队列按年龄和性别分层。对患有多种合并症的个体进行模糊 c 均值聚类分析,以确定每个分层中的多种合并症聚类。进行了双变量分析,以评估严重程度/死亡率与年龄、性别和多种合并症聚类之间的关系。

结果

报告了 9.5%(95%CI:9.0-9.9)的患者发生严重感染,3.9%(95%CI:3.6-4.2)的患者死亡。我们在 21 至 65 岁的大多数年龄组中确定了与严重程度/死亡率相关的多种合并症聚类。在男性中,严重程度/死亡率最高的聚类是心脏-肝脏-胃肠道(81-90 岁,34.1%的严重程度,29.5%的死亡率)。在女性中,严重程度/死亡率最高的聚类是糖尿病-心血管(81-95 岁,22.5%的严重程度)和精神老年病学(81-95 岁,16.0%的死亡率)。

结论

本研究根据性别和年龄对 COVID-19 患者的多种合并症聚类进行了描述,其中一些与更高的感染严重程度/死亡率相关,特别是在年轻个体中。鼓励进一步研究以确定特定多种合并症模式对感染预后的作用,并确定社区中最脆弱的合并症特征。

试验注册

NCT04981249。2021 年 8 月 4 日注册(回顾性注册)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4309/10470964/10ca82e28089/pone.0290969.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验