Suppr超能文献

基于低秩自适应微调SAM的跨域皮质下脑结构分割算法

Cross-domain subcortical brain structure segmentation algorithm based on low-rank adaptation fine-tuning SAM.

作者信息

Sui Yuan, Hu Qian, Zhang Yujie

机构信息

School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110169, China.

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):248. doi: 10.1186/s12880-025-01779-x.

Abstract

PURPOSE

Accurate and robust segmentation of anatomical structures in brain MRI provides a crucial basis for the subsequent observation, analysis, and treatment planning of various brain diseases. Deep learning foundation models trained and designed on large-scale natural scene image datasets experience significant performance degradation when applied to subcortical brain structure segmentation in MRI, limiting their direct applicability in clinical diagnosis.

METHODS

This paper proposes a subcortical brain structure segmentation algorithm based on Low-Rank Adaptation (LoRA) to fine-tune SAM (Segment Anything Model) by freezing SAM's image encoder and applying LoRA to approximate low-rank matrix updates to the encoder's training weights, while also fine-tuning SAM's lightweight prompt encoder and mask decoder.

RESULTS

The fine-tuned model's learnable parameters (5.92 MB) occupy only 6.39% of the original model's parameter size (92.61 MB). For training, model preheating is employed to stabilize the fine-tuning process. During inference, adaptive prompt learning with point or box prompts is introduced to enhance the model's accuracy for arbitrary brain MRI segmentation.

CONCLUSION

This interactive prompt learning approach provides clinicians with a means of intelligent segmentation for deep brain structures, effectively addressing the challenges of limited data labels and high manual annotation costs in medical image segmentation. We use five MRI datasets of IBSR, MALC, LONI, LPBA, Hammers and CANDI for experiments across various segmentation scenarios, including cross-domain settings with inference samples from diverse MRI datasets and supervised fine-tuning settings, demonstrate the proposed segmentation algorithm's generalization and effectiveness when compared to current mainstream and supervised segmentation algorithms.

摘要

目的

脑磁共振成像(MRI)中解剖结构的准确且稳健的分割为各种脑部疾病的后续观察、分析和治疗规划提供了关键基础。在大规模自然场景图像数据集上训练和设计的深度学习基础模型在应用于MRI中的皮质下脑结构分割时,性能会显著下降,限制了它们在临床诊断中的直接适用性。

方法

本文提出了一种基于低秩适应(LoRA)的皮质下脑结构分割算法,通过冻结SAM(分割一切模型)的图像编码器,并将LoRA应用于近似低秩矩阵更新到编码器的训练权重,同时还对SAM的轻量级提示编码器和掩码解码器进行微调。

结果

微调后的模型可学习参数(5.92MB)仅占原始模型参数大小(92.61MB)的6.39%。在训练过程中,采用模型预热来稳定微调过程。在推理过程中,引入了带有点或框提示的自适应提示学习,以提高模型对任意脑MRI分割的准确性。

结论

这种交互式提示学习方法为临床医生提供了一种对深部脑结构进行智能分割的手段,有效解决了医学图像分割中数据标签有限和人工标注成本高的挑战。我们使用IBSR、MALC、LONI、LPBA、Hammers和CANDI的五个MRI数据集在各种分割场景下进行实验,包括来自不同MRI数据集的推理样本的跨域设置和监督微调设置,与当前主流的监督分割算法相比,证明了所提出的分割算法的泛化性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验