de Hond Yvonne J M, van Haaren Paul M A, Tijssen Rob H N, Hurkmans Coen W
Department of Radiation Oncology, Catharina Hospital Eindhoven, the Netherlands.
Phys Imaging Radiat Oncol. 2025 Mar 5;33:100743. doi: 10.1016/j.phro.2025.100743. eCollection 2025 Jan.
Iterative reconstruction (IR) can be used to improve cone-beam computed tomography (CBCT) image quality and from such iterative reconstructed (iCBCT) images, synthetic CT (sCT) images can be generated to enable accurate dose calculations. The aim of this study was to evaluate the uncertainty in generating sCT from iCBCT using vendor-supplied software for online adaptive radiotherapy.
Projection data from 20 female pelvic CBCTs were used to reconstruct iCBCT images. The process was repeated with 128 different IR parameter combinations. From these iCBCTs, sCTs were generated. Voxel value variation in the 128 iCBCT and 128 sCT images per patient was quantified by the standard deviation (STD). Additional sub-analysis was performed per parameter category.
Generated sCTs had significantly higher maximum STD-values, median of 438 HU, compared to input iCBCT, median of 198 HU, indicating limited robustness to parameter changes. The highest STD-values of sCTs were within bone and soft-tissue compared to air. Variations in sCT numbers were parameter dependent. Scatter correction produced the highest variance in sCTs (median: 358 HU) despite no visible changes in iCBCTs, whereas total variation regularization resulted in the lowest variance in sCTs (median: 233 HU) despite increased iCBCT blurriness.
Variations in iCBCT reconstruction parameters affected the CT number representation in the sCT. The sCT variance depended on the parameter category, with subtle iCBCT changes leading to significant density alterations in sCT. Therefore, it is recommended to evaluate both iCBCT and sCT generation, especially when updating software or settings.
迭代重建(IR)可用于提高锥形束计算机断层扫描(CBCT)图像质量,并且从这种迭代重建的(iCBCT)图像中,可以生成合成CT(sCT)图像以实现准确的剂量计算。本研究的目的是使用供应商提供的在线自适应放射治疗软件评估从iCBCT生成sCT的不确定性。
使用来自20例女性盆腔CBCT的投影数据重建iCBCT图像。用128种不同的IR参数组合重复该过程。从这些iCBCT中生成sCT。通过标准差(STD)对每位患者的128幅iCBCT和128幅sCT图像中的体素值变化进行量化。对每个参数类别进行了额外的亚分析。
与输入的iCBCT(中位数为198 HU)相比,生成的sCT具有显著更高的最大STD值,中位数为438 HU,表明对参数变化的稳健性有限。与空气相比,sCT在骨骼和软组织中的STD值最高。sCT数量的变化取决于参数。散射校正产生的sCT方差最高(中位数:358 HU),尽管iCBCT没有明显变化,而总变差正则化导致sCT方差最低(中位数:233 HU),尽管iCBCT模糊度增加。
iCBCT重建参数的变化影响了sCT中的CT值表示。sCT方差取决于参数类别,iCBCT的细微变化会导致sCT中密度的显著改变。因此,建议评估iCBCT和sCT的生成,尤其是在更新软件或设置时。