Pastor-Escuredo David, Lombardot Benoît, Savy Thierry, Boyreau Adeline, Doursat René, Goicolea Jose M, Santos Andrés, Bourgine Paul, Del Álamo Juan C, Ledesma-Carbayo María J, Peyriéras Nadine
USR3695/FRE2039 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.
Biomedical Image Technologies, ETSIT, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
iScience. 2025 Jan 9;28(3):111753. doi: 10.1016/j.isci.2025.111753. eCollection 2025 Mar 21.
During morphogenesis, embryonic tissues display fluid-like behavior with fluctuating strain rates. Digital cell lineages reconstructed from 4D images of developing zebrafish embryos are used to infer representative tissue deformation patterns and their association with developmental events. Finite deformation analysis along cell trajectories and unsupervised machine learning are applied to obtain reduced-order models condensing the collective cell motions, delineating tissue domains with distinct 4D biomechanical behavior. This reduced-order kinematic description is reproducible across specimens and matches fate maps of the zebrafish brain in wild-type and nodal pathway mutants ( ), shedding light into the morphogenetic defects causing these mutants' cyclopia. Furthermore, the inferred kinematic maps also match expression maps of the gene transcription factor (). In summary, this work introduces an objective analytical framework to systematically unravel the complex spatiotemporal patterns of embryonic tissue deformations and couple them with cell fate and gene expression maps.
在形态发生过程中,胚胎组织表现出具有波动应变率的类流体行为。从发育中的斑马鱼胚胎的4D图像重建的数字细胞谱系被用于推断代表性的组织变形模式及其与发育事件的关联。沿着细胞轨迹进行有限变形分析并应用无监督机器学习,以获得凝聚集体细胞运动的降阶模型,描绘具有不同4D生物力学行为的组织域。这种降阶运动学描述在不同标本间具有可重复性,并且与野生型和节点通路突变体中斑马鱼脑的命运图谱相匹配( ),揭示了导致这些突变体独眼畸形的形态发生缺陷。此外,推断出的运动学图谱也与基因转录因子 ()的表达图谱相匹配。总之,这项工作引入了一个客观的分析框架,以系统地揭示胚胎组织变形的复杂时空模式,并将它们与细胞命运和基因表达图谱联系起来。