Suppr超能文献

BrainNeXt:用于使用MRI图像自动检测脑部疾病的新型轻量级卷积神经网络模型。

BrainNeXt: novel lightweight CNN model for the automated detection of brain disorders using MRI images.

作者信息

Poyraz Melahat, Poyraz Ahmet Kursad, Dogan Yusuf, Gunes Selva, Mir Hasan S, Paul Jose Kunnel, Barua Prabal Datta, Baygin Mehmet, Dogan Sengul, Tuncer Turker, Molinari Filippo, Acharya Rajendra

机构信息

Department of Radiology, Elazig Fethi Sekin City Hospital, Elazig, Turkey.

Department of Radiology, School of Medicine, Firat University, 23119 Elazig, Turkey.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):53. doi: 10.1007/s11571-025-10235-z. Epub 2025 Mar 22.

Abstract

The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.

摘要

本研究的主要目的是提出一种名为BrainNeXt的新型卷积神经网络,用于使用磁共振成像(MRI)图像自动检测脑部疾病。此外,我们旨在研究我们提出的网络在各种医学应用中的性能。为了实现高/稳健的图像分类性能,我们收集了一个属于四类的新MRI数据集:(1)阿尔茨海默病,(2)慢性缺血,(3)多发性硬化症,以及(4)对照。受ConvNeXt启发,我们通过合并Swin Transformers Tiny模型的结构元素,将BrainNeXt设计为一个轻量级分类模型。通过在收集的数据集上训练我们的模型,获得了一个预训练的BrainNeXt模型。此外,我们基于预训练的BrainNeXt提出了一种特征工程(FE)方法,该方法从固定大小的图像块中提取特征。在特征选择阶段,为了选择最具判别力/信息量最大的特征,我们采用了邻域成分分析选择器。作为基于图像块的FE方法的分类器,我们使用了支持向量机分类器。我们推荐的BrainNeXt方法在训练和验证中的准确率分别达到了100%和91.35%。推荐的模型在测试中的分类准确率为94.21%。为了进一步提高分类性能,我们提出了一种基于图像块的DFE方法,该方法在测试中的准确率达到了99.73%。在测试数据集上获得的结果超过了90%的准确率,证明了所提出模型的有效性和高分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19b/11929658/fe461085395b/11571_2025_10235_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验