Suppr超能文献

使用基于Resnet50*的可解释深度特征工程模型及内窥镜图像自动检测胃肠道疾病

Automated Detection of Gastrointestinal Diseases Using Resnet50*-Based Explainable Deep Feature Engineering Model with Endoscopy Images.

作者信息

Cambay Veysel Yusuf, Barua Prabal Datta, Hafeez Baig Abdul, Dogan Sengul, Baygin Mehmet, Tuncer Turker, Acharya U R

机构信息

Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Türkiye.

Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Mus Alparslan University, Mus 49250, Türkiye.

出版信息

Sensors (Basel). 2024 Dec 2;24(23):7710. doi: 10.3390/s24237710.

Abstract

This work aims to develop a novel convolutional neural network (CNN) named ResNet50* to detect various gastrointestinal diseases using a new ResNet50*-based deep feature engineering model with endoscopy images. The novelty of this work is the development of ResNet50*, a new variant of the ResNet model, featuring convolution-based residual blocks and a pooling-based attention mechanism similar to PoolFormer. Using ResNet50*, a gastrointestinal image dataset was trained, and an explainable deep feature engineering (DFE) model was developed. This DFE model comprises four primary stages: (i) feature extraction, (ii) iterative feature selection, (iii) classification using shallow classifiers, and (iv) information fusion. The DFE model is self-organizing, producing 14 different outcomes (8 classifier-specific and 6 voted) and selecting the most effective result as the final decision. During feature extraction, heatmaps are identified using gradient-weighted class activation mapping (Grad-CAM) with features derived from these regions via the final global average pooling layer of the pretrained ResNet50*. Four iterative feature selectors are employed in the feature selection stage to obtain distinct feature vectors. The classifiers k-nearest neighbors (kNN) and support vector machine (SVM) are used to produce specific outcomes. Iterative majority voting is employed in the final stage to obtain voted outcomes using the top result determined by the greedy algorithm based on classification accuracy. The presented ResNet50* was trained on an augmented version of the Kvasir dataset, and its performance was tested using Kvasir, Kvasir version 2, and wireless capsule endoscopy (WCE) curated colon disease image datasets. Our proposed ResNet50* model demonstrated a classification accuracy of more than 92% for all three datasets and a remarkable 99.13% accuracy for the WCE dataset. These findings affirm the superior classification ability of the ResNet50* model and confirm the generalizability of the developed architecture, showing consistent performance across all three distinct datasets.

摘要

这项工作旨在开发一种名为ResNet50的新型卷积神经网络(CNN),通过一种基于ResNet50的新型深度特征工程模型和内窥镜图像来检测各种胃肠道疾病。这项工作的新颖之处在于开发了ResNet50*,它是ResNet模型的一个新变体,具有基于卷积的残差块和类似于PoolFormer的基于池化的注意力机制。使用ResNet50对胃肠道图像数据集进行训练,并开发了一个可解释的深度特征工程(DFE)模型。这个DFE模型包括四个主要阶段:(i)特征提取,(ii)迭代特征选择,(iii)使用浅层分类器进行分类,以及(iv)信息融合。DFE模型是自组织的,产生14种不同的结果(8种特定于分类器的结果和6种投票结果),并选择最有效的结果作为最终决策。在特征提取过程中,使用梯度加权类激活映射(Grad-CAM)识别热图,并通过预训练的ResNet50的最终全局平均池化层从这些区域导出特征。在特征选择阶段使用四个迭代特征选择器来获得不同的特征向量。分类器k近邻(kNN)和支持向量机(SVM)用于产生特定的结果。在最后阶段使用迭代多数投票,根据分类准确率使用贪婪算法确定的顶级结果来获得投票结果。所提出的ResNet50在Kvasir数据集的增强版本上进行训练,并使用Kvasir、Kvasir版本2和无线胶囊内窥镜(WCE)策划的结肠疾病图像数据集对其性能进行测试。我们提出的ResNet50模型在所有三个数据集上的分类准确率均超过92%,在WCE数据集上的准确率高达99.13%。这些发现证实了ResNet50*模型卓越的分类能力,并确认了所开发架构的通用性,在所有三个不同的数据集上都表现出一致的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c6f/11644848/2e838dd71a4e/sensors-24-07710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验