Blundell Sophie, Radford Thomas W, Ajia Idris A, Lawson Daniel, Yan Xingzhao, Banakar Mehdi, Thomson David J, Zeimpekis Ioannis, Muskens Otto L
Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, U.K.
ACS Photonics. 2025 Mar 7;12(3):1382-1391. doi: 10.1021/acsphotonics.4c01789. eCollection 2025 Mar 19.
High-performance programmable silicon photonic circuits are considered to be a critical part of next-generation architectures for optical processing, photonic quantum circuits, and neural networks. Low-loss optical phase-change materials (PCMs) offer a promising route toward nonvolatile free-form control of light. Here, we exploit the direct-write digital patterning of waveguides using layers of the PCM SbSe with thickness values from 20 to 100 nm, demonstrating the scaling of induced optical phase shift with thickness and the ability to strongly increase the effect per pixel for thicker layers. We exploit the excellent refractive index matching between SbSe and silicon to achieve a low-loss hybrid platform for programmable photonics. A 5-fold reduction in the modulation length of a Mach-Zehnder interferometer is achieved with increasing thickness compared to the 20 nm thin-film SbSe devices, which decreased to 5 μm in this work. Application of the thicker PCM layers in direct-write digital programming of a multimode interferometer shows a corresponding 3-fold reduction of the number of programmed pixels to below 10 pixels per device. The demonstrated scaling of performance with SbSe layer thickness is important for establishing the optimum working range for hybrid silicon-SbSe devices and holds promise for achieving ultracompact, programmable photonic circuits.
高性能可编程硅光子电路被认为是用于光学处理、光子量子电路和神经网络的下一代架构的关键组成部分。低损耗光学相变材料(PCM)为实现光的非易失性自由形式控制提供了一条有前景的途径。在此,我们利用厚度在20至100纳米之间的PCM SbSe层对波导进行直写数字图案化,展示了诱导光学相移随厚度的缩放以及对于较厚层每像素效果大幅增强的能力。我们利用SbSe与硅之间出色的折射率匹配,实现了用于可编程光子学的低损耗混合平台。与20纳米薄膜SbSe器件相比,随着厚度增加,马赫-曾德尔干涉仪的调制长度降低了5倍,在本工作中降至5微米。将较厚的PCM层应用于多模干涉仪的直写数字编程,显示每个器件编程像素数量相应减少了3倍,降至10个像素以下。所展示的随着SbSe层厚度的性能缩放对于确定硅 - SbSe混合器件的最佳工作范围很重要,并有望实现超紧凑的可编程光子电路。