Ning Jing, Wang Yunzheng, Teo Ting Yu, Huang Chung-Che, Zeimpekis Ioannis, Morgan Katrina, Teo Siew Lang, Hewak Daniel W, Bosman Michel, Simpson Robert E
Singapore University of Technology and Design (SUTD), 8 Somapah Road, 487372 Singapore.
Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41225-41234. doi: 10.1021/acsami.2c12936. Epub 2022 Aug 31.
The switchable optical and electrical properties of phase change materials (PCMs) are finding new applications beyond data storage in reconfigurable photonic devices. However, high power heat pulses are needed to melt-quench the material from crystalline to amorphous. This is especially true in silicon photonics, where the high thermal conductivity of the waveguide material makes heating the PCM energy inefficient. Here, we improve the energy efficiency of the laser-induced phase transitions by inserting a layer of two-dimensional (2D) material, either MoS or WS, between the silica or silicon substrate and the PCM. The 2D material reduces the required laser power by at least 40% during the amorphization (RESET) process, depending on the substrate. Thermal simulations confirm that both MoS and WS 2D layers act as a thermal barrier, which efficiently confines energy within the PCM layer. Remarkably, the thermal insulation effect of the 2D layer is equivalent to a ∼100 nm layer of SiO. The high thermal boundary resistance induced by the van der Waals (vdW)-bonded layers limits the thermal diffusion through the layer interface. Hence, 2D materials with stable vdW interfaces can be used to improve the thermal efficiency of PCM-tuned Si photonic devices. Furthermore, our waveguide simulations show that the 2D layer does not affect the propagating mode in the Si waveguide; thus, this simple additional thin film produces a substantial energy efficiency improvement without degrading the optical performance of the waveguide. Our findings pave the way for energy-efficient laser-induced structural phase transitions in PCM-based reconfigurable photonic devices.
相变材料(PCM)可切换的光学和电学特性正在可重构光子器件中开拓数据存储之外的新应用。然而,需要高功率热脉冲才能将材料从晶态熔融淬火为非晶态。在硅光子学中尤其如此,其中波导材料的高导热性使得加热PCM的能量效率低下。在此,我们通过在二氧化硅或硅衬底与PCM之间插入一层二维(2D)材料(MoS或WS)来提高激光诱导相变的能量效率。根据衬底的不同,二维材料在非晶化(重置)过程中将所需的激光功率降低了至少40%。热模拟证实,MoS和WS二维层均起到热障的作用,能有效地将能量限制在PCM层内。值得注意的是,二维层的隔热效果相当于约100nm厚的SiO层。由范德华(vdW)键合层引起的高热边界电阻限制了热通过层界面的扩散。因此,具有稳定vdW界面的二维材料可用于提高PCM调谐硅光子器件的热效率。此外,我们的波导模拟表明,二维层不会影响硅波导中的传播模式;因此,这种简单的附加薄膜在不降低波导光学性能的情况下显著提高了能量效率。我们的研究结果为基于PCM的可重构光子器件中节能的激光诱导结构相变铺平了道路。