Farooq Saquib, Malla Javid Ahmad, Nedyalkova Miroslava, Freire Rafael V M, Mandal Indradip, Crochet Aurelien, Salentinig Stefan, Lattuada Marco, McTernan Charlie T, Kilbinger Andreas F M
Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland.
Artificial Molecular Machinery Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202504170. doi: 10.1002/anie.202504170. Epub 2025 Apr 4.
Aquaporins are natural proteins that rapidly transport water across cell membranes, maintaining homeostasis, whilst strictly excluding salt. This has inspired their use in water purification and desalination, a critical emerging need. However, stability, scalability, and cost have prevented their widespread adoption in water purification membrane technologies. As such, attention has turned to the use of artificial water channels, with pore-functionalized polymers and macrocycles providing a powerful alternative. Whilst impressive rates of transport have been achieved, the combination of a scalable, high-yielding synthesis and efficient transport has not yet been reported. Herein, we report such a system, with densely functionalized channel interiors, synthesized by high-yielding living polymerization with low polydispersities, showing high salt exclusion and excellent water transport rates. Our aramid foldamers create artificial water channels with hydrophobic interiors and single-channel water permeability rates of up to 10 water molecules per second per channel, approaching the range of natural aquaporins (c. 10). We show that water transport rates closely correspond to the helical length, with the polymer that most closely matches bilayer thickness showing optimal efficacy, as supported by molecular dynamics (MD) simulations. Our work provides a basis for the scalable synthesis of next-generation artificial water channels.
水通道蛋白是一种天然蛋白质,可快速跨细胞膜运输水,维持体内平衡,同时严格排斥盐分。这激发了它们在水净化和脱盐中的应用,这是一个迫切出现的关键需求。然而,稳定性、可扩展性和成本阻碍了它们在水净化膜技术中的广泛应用。因此,人们的注意力转向了人工水通道的使用,孔功能化聚合物和大环化合物提供了一种强大的替代方案。虽然已经实现了令人印象深刻的运输速率,但尚未报道可扩展、高产率合成与高效运输相结合的情况。在此,我们报道了这样一种系统,其通道内部功能密集,通过低多分散性的高产率活性聚合合成,显示出高盐分排斥率和优异的水运输速率。我们的芳纶折叠体创造了具有疏水内部的人工水通道,单通道水渗透率高达每秒每个通道10个水分子,接近天然水通道蛋白的范围(约10个)。我们表明,水运输速率与螺旋长度密切相关,与双层厚度最匹配的聚合物显示出最佳效果,分子动力学(MD)模拟也支持这一点。我们的工作为下一代人工水通道的可扩展合成提供了基础。