Corro Lucila M, Bagstad Kenneth J, Heris Mehdi P, Ibsen Peter C, Schleeweis Karen G, Diffendorfer Jay E, Troy Austin, Megown Kevin, O'Neil-Dunne Jarlath P M
U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO, 80225, USA.
Hunter College, Urban Policy & Planning, New York, NY, 10065, USA.
Sci Data. 2025 Mar 24;12(1):490. doi: 10.1038/s41597-025-04816-0.
Moderate-resolution (30-m) national map products have limited capacity to represent fine-scale, heterogeneous urban forms and processes, yet improvements from incorporating higher resolution predictor data remain rare. In this study, we applied random forest models to high-resolution land cover data for 71 U.S. urban areas, moderate-resolution National Land Cover Database (NLCD) Tree Canopy Cover (TCC), and additional explanatory climatic and structural data to develop an enhanced urban TCC dataset for U.S. urban areas. With a coefficient of determination (R) of 0.747, our model estimated TCC within 3% for 62 urban areas and added 13.4% more city-level TCC on average, compared to the native NLCD TCC product. Cross validations indicated model stability suitable for building a national-scale TCC dataset (median R of 0.752, 0.675, and 0.743 for 1,000-fold cross validation, urban area leave-one-out cross validation, and cross validation by Census block group median year built, respectively). Additionally, our model code can be used to improve moderate-resolution TCC in other parts of the world where high-resolution land cover data have limited spatiotemporal availability.
中等分辨率(30米)的全国地图产品在呈现精细尺度、异质的城市形态和过程方面能力有限,然而,通过纳入更高分辨率的预测数据来改进的情况仍然很少见。在本研究中,我们将随机森林模型应用于美国71个城市地区的高分辨率土地覆盖数据、中等分辨率的国家土地覆盖数据库(NLCD)树冠覆盖(TCC)以及其他解释性气候和结构数据,以开发一个用于美国城市地区的增强型城市TCC数据集。我们的模型决定系数(R)为0.747,在62个城市地区,其对TCC的估计误差在3%以内,与原生的NLCD TCC产品相比,平均增加了13.4%的城市层面TCC。交叉验证表明该模型稳定性适合构建全国尺度的TCC数据集(对于1000次交叉验证、城市地区留一法交叉验证以及按普查街区组建成中位数年份进行的交叉验证,中位数R分别为0.752、0.675和0.743)。此外,我们的模型代码可用于改善世界其他地区中等分辨率的TCC,在这些地区,高分辨率土地覆盖数据的时空可用性有限。