Suppr超能文献

一种通过多尺度上下文感知和语义信息引导实现交通标志检测的轻量级网络。

A lightweight network for traffic sign detection via multiple scale context awareness and semantic information guidance.

作者信息

Du Chenjie, Su Siyu, Lin Chenwei, Yao Yingbiao, Jin Ran, Hong Xinhua

机构信息

College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, China.

School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Sci Rep. 2025 Mar 24;15(1):10110. doi: 10.1038/s41598-025-94610-0.

Abstract

Traffic sign detection, as a critical branch of object detection, plays an essential role in both assisted driving and autonomous driving technologies. In this paper, we propose MASG-Net, a lightweight detection network designed to improve the accuracy and efficiency of traffic sign detection. First, we introduce a channel attention mechanism into MobileNetV3 to create a novel E-block structure and design E-mobilenet, a lightweight backbone network, to replace the backbone in YOLOv4-tiny, significantly enhancing feature extraction while reducing parameters. Second, we propose a multi-scale dilated convolution spatial pyramid pooling (MDSPP) module to expand the receptive field of feature maps, enabling the network to capture multi-scale contextual information effectively. Finally, a semantic information guidance (SIG) module is introduced to leverage deep semantic information to guide shallow feature layers, improving the detection of small traffic signs and enhancing robustness against cluttered backgrounds. Experimental results on the CCTSDB, GTSDB and TT100K datasets demonstrate that MASG-Net achieves superior detection performance, particularly for small and challenging traffic signs, while maintaining high efficiency with an inference speed of 203.6 FPS. These results highlight MASG-Net's potential for real-time traffic sign detection in practical applications.

摘要

交通标志检测作为目标检测的一个关键分支,在辅助驾驶和自动驾驶技术中都起着至关重要的作用。在本文中,我们提出了MASG-Net,这是一种轻量级检测网络,旨在提高交通标志检测的准确性和效率。首先,我们将通道注意力机制引入到MobileNetV3中,创建了一种新颖的E块结构,并设计了轻量级骨干网络E-mobilenet,以取代YOLOv4-tiny中的骨干网络,在减少参数的同时显著增强特征提取能力。其次,我们提出了一种多尺度扩张卷积空间金字塔池化(MDSPP)模块来扩大特征图的感受野,使网络能够有效地捕捉多尺度上下文信息。最后,引入了语义信息引导(SIG)模块,利用深度语义信息来引导浅层特征层,改善对小型交通标志的检测,并增强对杂乱背景的鲁棒性。在CCTSDB、GTSDB和TT100K数据集上的实验结果表明,MASG-Net实现了卓越的检测性能,特别是对于小型和具有挑战性的交通标志,同时以203.6 FPS的推理速度保持了高效率。这些结果凸显了MASG-Net在实际应用中进行实时交通标志检测的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9021/11933462/7dbdf3d95cff/41598_2025_94610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验